Skip to main content
Log in

Regulation of gene expression by endogenous ABA in tomato plants

  • Water Stress
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In response to water deficit, endogenous abscisic acid (ABA) accumulates in plants. This ABA serves as a signal for a multitude of processes, including regulation of gene expression. ABA accumulated in response to water deficit signals cellular as well as whole plant responses playing a role in the pattern of gene expression throughout the plant. Although the function of genes regulated by ABA during stress are currently poorly understood, a number of these genes may permit the plant to adapt to environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

GUS:

β-glucuronidase

RWC:

relative water content

wt:

wild type

References

  • Baker J., Steele C., Dure L. III 1988. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol. Biol. 11: 277–291.

    Article  CAS  Google Scholar 

  • Bernhard W.E., Thoma S., Botella J., Somerville C.R. 1991. Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized in the secretory pathway. Plant Physiol. 95:164–170.

    PubMed  CAS  Google Scholar 

  • Bray E.A. 1988. Drought-and ABA-induced changes in polypeptide and mRNA accumulation in tomato leaves. Plant Physiol. 88:1210–1214.

    PubMed  CAS  Google Scholar 

  • Bray E.A. 1990. Drought-stress-induced polypeptide accumulation in tomato leaves. Plant, Cell Environ. 13:531–538.

    Article  CAS  Google Scholar 

  • Bray E.A. 1993. Molecular responses to water deficit. Plant Physiol. 103: 1035–1040.

    PubMed  CAS  Google Scholar 

  • Bray E.A., Beachy R.N. 1985. Regulation by ABA of-conglycinin expression in cultured developing soybean cotyledons. Plant Physiol. 79:746–750.

    PubMed  CAS  Google Scholar 

  • Bray E.A., Moses M.S., Chung E., Imai R. 1996. The role of abscisic acid in the regulation of gene expression during drought stress. In. (Grillo S., Leone A., eds.) Physical Stresses in Plants: Genes and Their Products for Tolerance, Springer, N.Y. pp. 131–139.

    Google Scholar 

  • Bray E.A., Moses M.S., Imai R., Cohen A., Plant Á.L. 1993. Regulation of gene expression by endogenous abscisic acid during drought stress. In (Close and Bray, eds.) Plant Responses to Cellular Dehydration during Environmental Stress. Current Topics in Plant Physiology. Vol. 10, pp. 91–103.

    Google Scholar 

  • Close T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97:795–803.

    Article  CAS  Google Scholar 

  • Cohen A., Bray E.A. 1990. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182: 27–33.

    Article  CAS  Google Scholar 

  • Cohen A., Plant Á.L., Moses M.S., Bray E.A. 1991. Organ-specific and environmentally regulated expression of two abscisic acid-induced genes of tomato. Nucleotide sequence and analysis of the corresponding cDNAs. Plant Physiol. 97:1367–1374.

    PubMed  CAS  Google Scholar 

  • Cutler S., Ghassemian M., Bonetta D., Cooney S., McCourt P. 1996. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273: 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Dure L. III 1993. Structural motifs in LEA proteins. In (Close and Bray, eds.) Plant Responses to Cellular Dehydration During Environmental Stress. Current Topics in Plant Physiology. Vol. 10, pp. 91–103.

    CAS  Google Scholar 

  • Dure L., III Crouch M., Harada J., Ho T.-H.D., Mundy J., Quatrano R., Sung Z.R. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. Plant. Mol. Biol. 12:475–486.

    Article  CAS  Google Scholar 

  • Gollan T., Passioura J.B., Munns R. 1986. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust. J. Plant Physiol. 13: 459–464.

    Google Scholar 

  • Gowing D.J.G., Davies W.J., Jones H.G. 1990. A positive root-sourced signal as an indicator of soil drying in apple, Malux x domestica Borkh. J. Exp. Bot. 41: 1535–140.

    Article  Google Scholar 

  • Griffiths A., Bray E.A. 1996. Shoot induction of ABA-requiring genes in response to soil drying. J. Exp. Bot. 47:1525–1531.

    Article  CAS  Google Scholar 

  • Guerrero F., Mullet J.E 1986. Increased ABA biosynthesis during plant dehydration requires transcription. Plant Physiol. 80:588–591.

    PubMed  CAS  Google Scholar 

  • Hanson A.D., Hitz W.D. 1982. Metabolic responses of mesophytes to plant water deficits. Annu. Rev. Plant Physiol. 33: 163–203.

    Article  CAS  Google Scholar 

  • Hughes M.A., Dunn M.A., Pearce, R.S., White A.J., Zhang L. 1992. An abscisic acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant, Cell Environ. 15: 861–865.

    Article  CAS  Google Scholar 

  • Imai R., Moses M.S., Bray E.A. 1995. Expression of an ABA-induced gene of tomato in transgenic tobacco during periods of water deficit. J. Exp. Bot. 46:1077–1084.

    Article  CAS  Google Scholar 

  • Iwasaki T., Yamaguchi-Shinozaki K., Shinozaki, K. 1995. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol. Gen. Genet. 247: 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R.A. 1987. Assaying chimeric genes in plants. The GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405.

    Article  CAS  Google Scholar 

  • Jonak C., Kiergerl S., Ligterink, W., Barker PJ, Hirt, H. 1996. Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl Acad Sci. U.S.A. 93: 11274–11279.

    Article  PubMed  CAS  Google Scholar 

  • Knetsch, M.L.W., Wang M., Snaar-Jagalska B.E., Heimovaara-Dijkstra, S. 1996. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8: 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Líng V., Palva E.T. 1992. The expression of a rab-r-elated gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20:951–962.

    Article  Google Scholar 

  • Leung J., Bouvier-Durand M., Morris P.C., Guerrier D., Chefdor F., Giraudat J. 1994. Arabidopsis ABA response gene ABI1: Features of a calcium-modulated protein phosphatase. Science 264: 1448–1452.

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S., Giraudat J. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771.

    Article  PubMed  CAS  Google Scholar 

  • Liu J.H., Hill R.D. 1995. Post-transcriptional regulation of bifunctional alpha-amylase/subtilisin inhibitor expression in barley embryos by abscisic acid. Plant Mol. Biol. 29:1087–1091.

    Article  PubMed  CAS  Google Scholar 

  • Marcotte W.R., Russel S.H., Quatrano R. 1989. Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1: 969–976.

    Article  PubMed  CAS  Google Scholar 

  • Meyer K., Leube M.P., Grill E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452–1455.

    Article  PubMed  CAS  Google Scholar 

  • Mitcham E., Gross K.C., Ng T.J. 1989. Tomato fruit cell wall synthesis during development and senescence. Plant Physiol. 89: 477–481.

    PubMed  CAS  Google Scholar 

  • Molina A., Garcia-Olmedo F. 1993. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 4: 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Parry A.D., Neill S.J., Horgan R. 1987. Xanthoxin levels and metabolism in the wild type and wilty mutants of tomato. Planta 173: 397–404.

    Article  Google Scholar 

  • Passioura J.B. 1988. Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol. 15: 687–693.

    Article  Google Scholar 

  • Pla M., Goday A., Vilardell J., Gomez J., Pagčs M. 1989. Differential regulation of ABA-induced 23–25 kDa proteins in embryos and vegetative mutants of maize. Plant Mol. Biol. 13; 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Plant Á.L. Cohen A., Bray E.A. 1991. Nucleotide sequence and spatial expression pattern of a drought-and ABA-induced gene in tomato. Plant Physiology 97:900–906.

    PubMed  CAS  Google Scholar 

  • Quarrie S.A., Lister P.G. 1984. Effects of inhibitors of protein synthesis on abscisic acid accumulation in wheat. Z. Pflanzenphysiol. 114:309–314.

    CAS  Google Scholar 

  • Quatrano R.S., Bartels D., Ho T.-H.D., Pagčs, M. 1997. New insights into ABA-mediated processes. Plant Cell 9:470–473.

    Article  CAS  Google Scholar 

  • Schwartz S.H., Tan B.C., Gage D.A., Zeevaart J.A.D., McCarty D.R. 1997. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874.

    Article  PubMed  CAS  Google Scholar 

  • Shen Q., Ho T.-H.D. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Shen Q., Zhang P.N., Ho T.-H.D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression barley. Plant Cell 8: 1107–1119.

    Article  PubMed  CAS  Google Scholar 

  • Sterk P., Booij H, Schellekens GA, Van Kammen A, De Vries SC. 1991. Cell-specific expression of the carrot EPS lipid transfer protein gene. Plant Cell 3: 907–906.

    Article  PubMed  CAS  Google Scholar 

  • Terras F.R., Goderis IJ, Van Leuven F., Venderleyden J., Cammue B.P.A., Broekaert W.F. 1992. In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to non-specific lipid transfer proteins. Plant Physiol. 100:1055–1058.

    PubMed  CAS  Google Scholar 

  • Thoma S., Kaneko Y., Somerville C. 1993. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 3: 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Torres-Schumann J., Godoy J.A., Pinto-Toro, J.A. 1992. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol. Biol. 18:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson S., Davies W.J. 1997. Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 113: 559–573.

    PubMed  CAS  Google Scholar 

  • Williamson J.D., Quatrano R.S. 1988. ABA-regulation of two classes of embryo-specific sequences in mature wheat embryos. Plant Physiol. 86:208–215.

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart J.A.D., Creelman R.A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 439–473.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, E.A., Cohen, A., Plant, Á.L. et al. Regulation of gene expression by endogenous ABA in tomato plants. Acta Physiol Plant 19, 405–418 (1997). https://doi.org/10.1007/s11738-997-0037-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-997-0037-2

Key words

Navigation