Skip to main content
Log in

Flavonoid biosynthesis regulation for leaf coloring of Cyclocarya paliurus

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cyclocarya paliurus leaves contain abundant flavonoids with beneficial bioactivities and antioxidant activities. Red leaves of Cyclocarya paliurus have been considered to have higher flavonoids content, while the flavonoid derivatives accumulation pattern was still unclear. To uncover the flavonoids variation mechanism during red young leaf growing, transcriptome and metabolome analysis on Cyclocarya paliurus clone with red leaves was made. Leaves samples of young red leaf, half red leaf and old green leaf stage were researched. The result showed that young red leaf contained higher anthocyanin and quercetin contents, while lower kaempferol and catechins contents compared to old green leaf. And flavonoid biosynthesis-related unigenes (UDP-flavonoid glucosyl transferase) were identified for promoting anthocyanin accumulation in the flavonoid biosynthesis pathway. Besides, transcription factors were also found to influence the flavonoids variation pattern in the red leave of C. paliurus. These findings provide information about the relationship between flavonoids and leaf color, and will be useful for C. paliurus selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due the data also form part of an ongoing study but are available from the corresponding author on reasonable request.

Abbreviations

C. Paliurus :

Cyclocarya paliurus

LC1:

The C. paliurus clone seedlings with red young leaves were used as plant materials

FPKM:

The fragments per kilobase of exon per million fragments mapped

MYB TFs:

MYB transcription factors

A:

Old green leaf period

B:

Semi red leaf period

C:

Young red leaf period

ABLog2 FC:

Log2 fold change between A and B stage

BCLog2 FC:

Log2 fold change between B and C stage

ACLog2 FC:

Log2 fold change between A and C stage

PAL:

Phenylalanine ammonia-lyase

C4H:

Cinnamic acid 4-hydroxylase

4CL:

4 Coumarate CoA ligase

CHS:

Chalcone synthase

CHI:

Chalcone isomerase

F3H:

Flavanone 3-hydroxylase

CYP75A:

Flavonoid 3ʹ, 5ʹ-hydroxylase

CYP75B1:

Flavonoid 3ʹ-monooxygenase

FLS:

Flavonol synthase

UFGT:

UDP-flavonoid glucosyl transferase

DFR:

Dihydroflavonol 4-reductase

LAR:

Leucoanthocyanidin reductase

ANS:

Anthocyanidin synthase

ANR:

Anthocyanidin reductase

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • Cao YN, Fang SZ, Yin ZQ, Fu XX, Shang XL, Yang WX, Yang HM (2017) Chemical fingerprint and multicomponent quantitative analysis for the quality evaluation of Cyclocarya paliurus leaves by HPLC-Q-TQF-MS. Molecules 22(11):1927–1942. https://doi.org/10.3390/molecules22111927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TT, Liu FF, Xiao DW, Jiang XY, Li P, Zhao SM, Hou BK, Li YJ (2020) The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Mol Biol 102(4):389–401

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Fang SZ, Shang XL, Fu XX, Yang WX (2019) Influence of genotypes and environmental factors on leaf triterpenoid content and growth of Cyclocarya paliurus. J Forest Res 30(3):789–798. https://doi.org/10.1007/s11676-018-0680-z

    Article  CAS  Google Scholar 

  • Fang SZ, Yang WX, Chu XL, Shang XL, She CQ, Fu XX (2011) Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus. Food Chem 124:1382–1386

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full length transcriptome assembly from RNA Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Yang C, Zhou J, Zhu J, Meng J, Shen T, Li H (2020) Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Braz J Bot 43:81–89

    Article  Google Scholar 

  • Kerio LC, Wachira FN, Wanyoko JK, Rotich MK (2012) Characterization of anthocyanins in Kenyan teas: extraction and identification. Food Chem 131:31–38

    Article  CAS  Google Scholar 

  • Kurihara H, Asami S, Shibata H, Fukami H, Tanaka T (2003) Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol Pharm Bull 26:383–385. https://doi.org/10.1248/bpb.26.383

    Article  CAS  PubMed  Google Scholar 

  • Lai YS, Li S, Tang Q, Li HX, Chen SX, Li PW, Xu JY, Xu Y, Guo X (2016) The dark-purple tea cultivar ‘Ziyan’ accumulates a large amount of delphinidin-related anthocyanins. J Agr Food Chem 64(13):2719–2726

    Article  CAS  Google Scholar 

  • Li B, Colin ND (2011) RSEM: accurate transcript quantification from RNA Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li XC, Fu XX, Shang XL, Yang WX, Fang SZ (2017) Natural population structure and genetic differentiation for heterodicogamous plant: Cyclocarya paliurus (Batal.) Iljinskaja (Juglandaceae). Tree Genet Genomes 13:80. https://doi.org/10.1007/s11295-017-1157-5

    Article  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cao YN, Fang SZ, Wang TL, Yin ZQ, Shang XL, Yang WX, Fu XX (2018) Antidiabetic effect of Cyclocarya paliurus leaves depends on the contents of antihyperglycemic flavonoids and antihyperlipidemic triterpenoids. Molecules 23(5):1042–1058. https://doi.org/10.3390/molecules23051042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

  • Luo J, Duan J, Da NH, Shi Q, Niu L, Zhang Y (2017) Transcriptomic analysis reveals transcription factors related to leaf anthocyanin biosynthesis in Paeonia qiui. Molecules 22(12):2186

    Article  PubMed  PubMed Central  Google Scholar 

  • Manchester SR, Chen ZD, Lu AM, Uemura K (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42. https://doi.org/10.1111/j.1759-6831.2009.00001.x

    Article  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Matus JT, Loyola R, Vega A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces myb-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of vitis vinifera. J Exp Bot 60(3):853–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng X, Chen H, Wang J, Zheng Y, Li J (2021) Joint transcriptomic and metabolic analysis of flavonoids in Cyclocarya Paliurus leaves. ACS Omega 6(13):9028–9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Shang X, Ding H, Cao Y, Fang S (2020) Natural variations in flavonoids and triterpenoids of Cyclocarya Paliurus leaves. J For Res. https://doi.org/10.1007/s11676-020-01139-1

    Article  Google Scholar 

  • Sun C, Zhou Y, Fang S, Shang X (2021a) Ecological gradient analysis and environmental interpretation of Cyclocarya paliurus communities. Forests 12:146. https://doi.org/10.3390/f12020146

    Article  Google Scholar 

  • Sun C, Fang S, Shang X (2021b) Triterpenoids biosynthesis regulation for leaf coloring of wheel wingnut (Cyclocarya paliurus). Forests 12(12):1733. https://doi.org/10.3390/f12121733

    Article  Google Scholar 

  • Tan L, Yang C, Zhou B, Wang L, Tang Q (2020) Inheritance and quantitative trait loci analyses of the anthocyanins and catechins of Camellia Sinensis cultivar ‘ziyan’ with dark-purple leaves. Physiol Plant 170(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Zhang J, Han Z, Song T, Li J, Wang Y, Yao Y (2017) YMcMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus crabapple. Sci Rep. https://doi.org/10.1038/srep43715

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian L, Xu C, Shang X, Fu X (2021) Evaluation and selection on superior individuals for medicinal use of Cyclocarya paliurus. J Nanjing Forest Univ 45(1):21–28. https://doi.org/10.12302/j.issn.1000-2006.202002018

    Article  CAS  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and favonol synthesis in red-feshed apple (Malus sieversii f. niedzwetzkyana). Plant J 90:276–292. https://doi.org/10.1111/tpj.13487

    Article  CAS  PubMed  Google Scholar 

  • Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q (2020) Arabidopsis MYB4 plays dual roles in favonoid biosynthesis. Plant J 101:637–652

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Wang LY, Zhang YZ, Ruan L, Li HL, Wu LY, Xu LY, Zhang CC, Zhou XG, Cheng H, Edwards R (2019) A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. Plant J 97(5):825–840

    Article  CAS  PubMed  Google Scholar 

  • Xie MY, Xie JH (2008) Review about the research on Cyclocarya paliurus (Batal.) Iljinskaja. J Food Sci Biotechnol 27(1):113–121. https://doi.org/10.3321/j.issn:1673-1689.2008.01.021

    Article  Google Scholar 

  • Xie MY, Li L, Nie SP, Wang XR, Lee FSC (2006) Determination of speciation of elements related to blood sugar in bioactive extracts from Cyclocarya paliurus leaves by FIA-ICP-MS. Eur Food Res Technol 223(2):202–209. https://doi.org/10.1007/s00217-005-0173-0

    Article  CAS  Google Scholar 

  • Yu G, Wang L, Han Y, He Q (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: J Integr Biol 16:284–287

    Article  CAS  Google Scholar 

  • Zhang TJ, Zheng J, Yu ZC, Huang XD, Zhang QL, Tian XS, Peng CL (2018) Functional characteristics of phenolic compounds accumulated in young leaves of two subtropical forest tree species of different successional stages. Tree Physiol 10:10

    Google Scholar 

  • Zhang Q, Wang L, Liu Z, Zhao Z, Zhao J, Wang Z, Zhou G, Liu P, Liu M (2020a) Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration. Food Chem 312:125903

    Article  CAS  PubMed  Google Scholar 

  • Zhang QF, Hu JH, Liu MY, Shi YZ, Rch DV, Ruan JY (2020b) Stimulated bio-synthesis of delphinidin-related anthocyanins in tea shoots reducing the quality of green tea in summer. J Sci Food Agric 100:1505–1514

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32201541), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Doctorate Fellowship Foundation of Nanjing Forestry University. The funders had no role in studying design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xulan Shang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by A. Krolicka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Fang, S. & Shang, X. Flavonoid biosynthesis regulation for leaf coloring of Cyclocarya paliurus. Acta Physiol Plant 45, 91 (2023). https://doi.org/10.1007/s11738-023-03571-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03571-2

Keywords

Navigation