Skip to main content
Log in

Codon usage bias and evolution analysis in the mitochondrial genome of Mesona chinensis Benth

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mesona chinensis Benth (MCB) is an edible and medicinal plant in southern China and Southeast Asian countries. Mitochondria, semi-autonomous organelles in eukaryotic cells, contain their own genome (mitogenome) and are involved in various cellular processes. Codons are the core elements of protein translation in gene-coding regions. It is of great significance to analyze the characteristics of codon usage in gene-coding regions for gene function and phylogenetic studies. Here, the codon usage pattern and the factors affecting codon usage bias (CUB), and the cluster and phylogenetic analysis based on mitogenomes were determined. Results of nucleotide composition analysis showed an unequal distribution of T, G, A, and C nucleotides and AT bias in MCB mitogenome. The GC, GC1, GC2, GC3 content, codon adaption index (CAI), and effective number codon (ENC) of MCB mitogenome were 43.09%, 48.37%, 42.67%, 38.22%, 0.632, and 55.539, respectively, while those of each gene ranged from 35.61% to 51.85%, 36.25% to 56.69%, 33.46% to 47.76%, 23.08% to 58.15%, 37.81 to 60.02, and 0.564 to 0.680, respectively. 18 out of 28 genes showed the highest GC1 content and the lowest GC3 content, and the general order of GC content in different codon positions was GC1 > GC2 > GC3. Further analysis of the neutrality plot, ENC-plot, and PR2-bias plot revealed that the CUB of MCB mitogenome was affected by natural selection and mutation. Seven optimal codons, TTG, GAC, TCA, AGA, ACC, GGG, and ATA were determined in MCB mitogenome. The phylogenetic tree based on mitogenome sequences and the cluster analysis based on relative synonymous codon usage (RSCU) values indicated that the CUB of mitogenome might have to do with the genetic relationship among species. Overall, the current study positively contributed to the molecular mechanism of biological adaptation and the evolutionary relationship of MCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angellotti MC, Bhuiyan SB, Chen G, Wan XF (2007) CodonO: codon usage bias analysis within and across genomes. Nucleic Acids Res 35:132–136

    Article  Google Scholar 

  • Bornali D, Arif U, Gulshana AM, Supriyo C (2018) Analysis of codon usage pattern of mitochondrial protein-coding genes in different hookworms. Mol Biochem Parasitol 219:24–32

    Article  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129(3):897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai MS, Cheng AC, Wang MS, Zhao LC (2009) Characterization of synonymous codon usage bias in the duck plague virus UL35 gene. Intervirology 52:266–278

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Yengkhom S, Uddin A (2020) Analysis of codon usage bias of chloroplast genes in Oryza species. Planta 252:67

    Article  CAS  PubMed  Google Scholar 

  • Debaroti D, Bornali D, Arup KM, Supriyo C (2020) Allele frequency analysis of GALC gene causing Krabbe disease in human and its codon usage. Gene 747:144673

    Article  Google Scholar 

  • Francino HP, Ochman H (1999) Isochores result from mutation not selection. Nature 400:30–31

    Article  CAS  PubMed  Google Scholar 

  • Hélène P, Pierre G, Jacques-Henry W, Pillay DTN (1987) Adjustment of the tRNA population to the codon usage of chloroplasts. Nucleic Acids Res 15:137

    Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  • Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genetic Syst 78(5):343–352

    Article  CAS  Google Scholar 

  • Lavner Y, Kotlar D (2005) Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 345:127–138

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Pan ZL, Gao SC, He YY, Xia QY, Yan J, Yao HP (2019) Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Gene Genomics 41:1173–1181

    Article  CAS  Google Scholar 

  • Li YQ, Zhao HK, Tan H, Liu XD, Zhang CB, Dong YS (2011) Analysis and comparison on characteristic of mitochondrial genome of eight plants. Biotechnol Bull 10:156–162

    Google Scholar 

  • Liu HY, Sun CH, Zhu Y, Li YD, Wei YS, Ruan HH (2020) Mitochondrial genomes of four American characins and phylogenetic relationships within the family Characidae (Teleostei: Characiformes). Gene. https://doi.org/10.1016/j.gene.2020.145041

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zhao WM, Yan Z, Hong W, Mei Q, Ping YX (2005) Analysis of synonymous codon usage bias in Chlamydia. Acta Biochim Biophys Sin 37:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mazumder GA, Uddin A, Chakraborty S (2015) Prediction of gene expression and codon usage in human parasitic helminths. Genes Genom. https://doi.org/10.1007/s13258-015-0381-3

    Article  Google Scholar 

  • Nie XJ, Deng PC, Feng KW, Liu PX, Du XH, You FM, Song WM (2013) Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol Biol Rep. https://doi.org/10.1007/s11105-013-0691-z

    Article  PubMed  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  CAS  PubMed  Google Scholar 

  • Peden JF 1999 Analysis of codon usage. PhD thesis. Nottingham University, Department of Genetics. 73–74

  • Peretó J (2015) Mitochondrion. Gargaud M. et al. Encyclopedia of Astrobiology (eds). Springer, Berlin, Heidelberg. 1592

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358

    Article  CAS  PubMed  Google Scholar 

  • Petersena G, Andersona B, Braun HP, Meyer EH, Møller IM (2020) Mitochondria in parasitic plants. Mitochondrion 52:173–182

    Article  Google Scholar 

  • Ren YM, Jiang L, Wang WJ, Xiao YH, Liu SC, Luo Y, Shen MY, Xie JH (2019) Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocolloids 99:105371

    Article  Google Scholar 

  • Roychoudhury S, Mukherjee D (2010) A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res 148(12):31–43

    Article  CAS  PubMed  Google Scholar 

  • Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24(1–2):28–38

    Article  CAS  PubMed  Google Scholar 

  • Shields DC, Sharp PM, Higgins DG, Wright F (1988) “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5(6):704–716

    CAS  PubMed  Google Scholar 

  • Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40(3):318–325

    Article  CAS  PubMed  Google Scholar 

  • Sueoka N (1999) Two aspects of DNA base composition: G+C content and translation-coupled deviation from intra-strand rule of A=T and G=C. J Mol Evol 49(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wan DC, Murphy RW, Ma L, Zhang XS, Huang DW (2009) Comparison of base composition and codon usage in insect mitochondrial genomes. Genes & Genomics 31(1):65–71

    Article  CAS  Google Scholar 

  • Supriyo C, Sophiarani Y, Arif U (2020) Analysis of codon usage bias of chloroplast genes in Oryza species. Planta 252:67

    Article  Google Scholar 

  • Tang DF, Wei F, Cai ZQ, Wei YY, Aziz K, Miao JH, Wei KH (2020) Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev Genes Evol 231:1–9

    Article  PubMed  Google Scholar 

  • Tang DF, Huang QF, Wei KH, Yang XN, Wei F, Miao JH (2021) Identification of differentially expressed genes and pathways involved in growth and development of Mesona chinensis Benth under red and blue light conditions. Front Plant Sci 12:761068

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang DF, Quan CQ, Wei KH, Lin Y, Huang QF, Wei F, Miao JH (2022a) Physio-morphological, biochemical and transcriptomic analyses provide insights into drought stress responses in Mesona chinensis Benth. Front Plant Sci 13:809723

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang DF, Lin Y, Wei F, Quan CQ, Wei KH, Wei YY, Cai ZQ, Muhammad HK, Miao JH (2022b) Characteristics and comparative analysis of Mesona chinensis Benth chloroplast genome reveals DNA barcode regions for species identification. Funct Integr Genomics. https://doi.org/10.1007/s10142-022-00846-8

    Article  PubMed  Google Scholar 

  • Wang HC, Hickey DA (2007) Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol 7(1):S6

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang TY, Wang LY, Zhang JG, Zeng YF (2019a) Assembling and analysis of the whole chloroplast genome sequence of Elaeagnus angustifolia and its codon usage bias. Acta Bot. Boteal. Occident. Sin. 39(9):1559–1572

    Google Scholar 

  • Wang WJ, Jiang L, Ren YM, Shen MY, Xie JH (2019b) Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride induced acute liver injury in mice. Int J Biol Macromol 124:788–795

    Article  CAS  PubMed  Google Scholar 

  • Wei L, He J, Jia X, Qi Q (2014) Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol 14:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  • Wright F (1990) The “effective number of codons” used in a gene. Gene 87:23–29

    Article  CAS  PubMed  Google Scholar 

  • Wu ML, Chen SP, Chen H (2019) Condon preference of chloroplast genome of Bambusoideae. J Forest Environ 39(1):9–14

    Google Scholar 

  • Xiao YH, Liu SC, Shen MY, Jiang L, Ren YM, Luo Y (2019) Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction. Int J Biol Macromol 126:30–36

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Deng L, Chen F (2020) Codon usage bias of chloroplast genome in Kandelia obovata. J Forest Environ 40(5):534–541

    Google Scholar 

  • Zhou M, Li X (2009) Analysis of synonymous codon usage patterns in different plant mitochondrial genomes. Mol Biol Rep 36:2039–2046

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Long W, Li X (2008) Analysis of synonymous codon usage in chloroplast genome of Populus alba. J Fores Res 19(4):293–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2019YFC1711000; 2019YFC1711008), National Natural Science Foundation of China (82260749; 82260750), Scientific Research Funding Project of Guangxi Botanical Garden of Medicinal Plants (GuiYaoJi202011), Guangxi Innovation-Driven Development Project (GuiKe AA18242040), Natural Science Foundation of Guangxi (2020JJA140312), Research and Promotion of China-ASEAN Medicinal Plants Conservation (KY201904001), “Guangxi Bagui Scholars” and Research Innovation Team Project (GuiYaoChuang2019005), and Fund Projects of the Central Government in Guidance of Local Science and Technology Development (2022ZYZX1100).

Funding

National Key R&D Program of China, 2019YFC1711000, Jianhua Miao, 2019YFC1711008, Jianhua Miao, National Natural Science Foundation of China, 82260749, Fan Wei, 82260750, Danfeng Tang, Scientific Research Funding Project of Guangxi Botanical Garden of Medicinal Plants, GuiYaoJi202011, Danfeng Tang, Guangxi Innovation-Driven Development Project, GuiKe AA18242040, Jianhua Miao, Natural Science Foundation of Guangxi, 2020JJA140312, Fan Wei, Research and Promotion of China-ASEAN Medicinal Plants Conservation, KY201904001, Jianhua Miao, “Guangxi Bagui Scholars” and Research Innovation Team Project, GuiYaoChuang2019005, Kunhua Wei, Fund Projects of the Central Government in Guidance of Local Science and Technology Development, 2022ZYZX1100, Danfeng Tang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danfeng Tang or Jianhua Miao.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Communicated by M. Stobiecki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11738_2022_3453_MOESM1_ESM.xlsx

Table S1 Gene information used in this study. Table S2 Species information used in this study. Table S3 Statistics of nucleotide composition of all the 28 mitochondrial genes studied (XLSX 23 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Wei, F., Quan, C. et al. Codon usage bias and evolution analysis in the mitochondrial genome of Mesona chinensis Benth. Acta Physiol Plant 44, 118 (2022). https://doi.org/10.1007/s11738-022-03453-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03453-z

Keywords

Navigation