Skip to main content

Advertisement

Log in

Genome-wide molecular characterization of Phosphate Transporter 1 and Phosphate Starvation Response gene families in Elaeis guineensis Jacq. and their transcriptional response under different levels of phosphate starvation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phosphate (Pi) fertilizer is applied in huge amount due to the poor absorption of Pi by crops especially in acidic tropical soil. As the major global source of oil and fats, the mechanism of Pi transport in oil palm needs to be studied to maintain good productivity for sustainable palm oil production. Ten Elaeis guineensis Phosphate Transporter1 (EgPHT1) and three Elaeis guineensis Phosphate Starvation Response (EgPHR) genes were identified in this study. All EgPHT1 proteins contain GGDYPLSATIxSE, the signature sequence of PHT1. All EgPHR have MYB-binding domain and coiled-coil domain characteristic of PHR at their C-terminal regions and one unique SOG2 domain for EgPHR1. The expression of four of the EgPHT1 and two of the EgPHR under low Pi (LP) and Pi starvation (-P) was studied by real-time quantitative PCR (qPCR). All genes showed enhanced expression in roots at −P compared to +P but no detectable change in the leaves. The expression profile of EgPHR2 which showed significant upregulation at LP compared to +P and further increase at −P correlated with EgPHT1;4 and EgPHT1;7 that possess P1BS motif in their promoter sequences, the binding site for PHR. PHR2, as a potential early transcriptional regulator for phosphate starvation was proven to be nuclear localized by subcellular localization experiment. Altogether, this study suggests all four analyzed EgPHT1 and two EgPHR play critical role in responding to Pi deprivation in oil palm. EgPHT1;4 and EgPHT1;7 which possess the P1BS motif are potentially upregulated by EgPHR2 as an early response mechanism against phosphate starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

+P:

Pi sufficient

–P:

Pi deficient

aa:

Amino acids

AMF:

Arbuscular mycorrhizal fungi

bHLH:

Basic helix-loop-helix

BLAST:

Basic Local Alignment Search Tool

CaMV:

Cauliflower mosaic virus

CC:

Coiled-coil

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFP:

Green fluorescent protein

GM:

Genetically modified

LP:

Low Pi

MEGA 7:

Molecular evolutionary genetics analysis 7

MYB:

Myeloblastosis

NCBI:

National Center for Biotechnology Information

P:

Phosphorus

P1BS:

PHR1-binding sequence

PCR:

Polymerase chain reaction

PHF1:

Phosphate transporter traffic facilitator 1

PHL1:

PHR1-LIKE1

PHR:

Phosphate starvation response

PHT1:

Phosphate transporter

1Pi:

Phosphate

PSI:

Pi starvation induced

qPCR:

Quantitative real-time PCR

References

  • Ahmadi F, Abdullah SNA, Kadkhodaei S, Ijab SM, Hamzah L, Aziz MA, Rahman ZA, Alwee SSRS (2018) Functional characterization of the gene promoter for an Elaeis guineensis phosphate starvation-inducible, high affinity phosphate transporter in both homologous and heterologous model systems. Plant Physiol Biochem 127:320–335

    Article  CAS  PubMed  Google Scholar 

  • Azizi P, Rafii MY, Mahmood M, Abdullah SNA, Hanafi MS, Latif MA, Sahebi M, Ashkani S (2016) Evaluation of RNA extraction methods in rice and their application in expression analysis of resistance genes against Magnaporthe oryzae. Biotechnol Biotechnol Equip 31(1):75–84

    Article  Google Scholar 

  • Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM (2016) Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress. Acta Physiol Plant 38(52):1–12

    CAS  Google Scholar 

  • Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM (2017) Oil palm drought inducible DREB1 induced expression of DRE/CRT- and non-DRE/CRT-containing genes in lowland transgenic tomato under cold and PEG treatments. Plant Physiol Biochem 112:129–151

    Article  CAS  PubMed  Google Scholar 

  • Barcelos E, Rios Sde A, Cunha RN, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6(190):1–16

    Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141(3):988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck MJ, Atchley WR (2003) Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol 56(6):742–750

    Article  CAS  PubMed  Google Scholar 

  • Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in arabidopsis. PLoS Genet 6(9):e1001102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21(11):3554–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, Chen X, Wang H, Liao D, Gu M, Qu H, Sun S, Xu G (2014) Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC Plant Biol 14(61):1–15

    Google Scholar 

  • Cooper A (1979) The ABC of NFT: nutrient film technique. Grower Books, London

    Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: Global food security and food for thought. Global Environ Change 19(2):292–305

    Article  Google Scholar 

  • Corley RHV (2009) How much palm oil do we need? Environ Sci Policy 12(2):134–139

    Article  CAS  Google Scholar 

  • Dai X, Wang Y, Zhang WH (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67(3):947–960

    Article  CAS  PubMed  Google Scholar 

  • Del Aguila EM, Dutra MB, Silva JT, Paschoalin VM (2005) Comparing protocols for preparation of DNA-free total yeast RNA suitable for RT-PCR. BMC Mol Biol 6(9):1–6

    Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143(4):1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi M, Abdullah SNA, Aziz MA, Namasivayam P (2015) A novel CBF that regulates abiotic stress response and the ripening process in oil palm (Elaeis guineensis) fruits. Tree Genet Genomes 11(56):1–16

    Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Wang X, Hu R, Wang Y, Xiao C, Jiang Y, Zhang X, Zheng C, Fu Y-F (2013) The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biol 13(48):1–16

    Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15(22):2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Castañeda T, Romero HM (2013) Mycorrhization in oil palm (Elaeis guineensis and E. oleifera x E. guineensis) in the pre-nursery stage. Agron Colomb 31(1):95–102

    Google Scholar 

  • Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17(12):3500–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138(2):226–237

    Article  CAS  PubMed  Google Scholar 

  • Gu M, Chen A, Sun S, Xu G (2016) Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Mol Plant 9(3):396–416

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X (2015) Integrative comparison of the role of the PHR1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168(4):1762–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanifiah FHA, Abdullah SNA, Othman A, Shaharuddin NA, Saud HM, Hasnulhadi HAH, Munusamy U (2018) GCTTCA as a novel motif for regulating mesocarp-specific expression of the oil palm (Elaeis guineensis Jacq.) stearoyl-ACP desaturase gene. Plant Cell Rep 37(8):1127–1143

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7(4):1–19

    Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156(3):1164–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehr J (2013) Systemic regulation of mineral homeostasis by micro RNAs. Front Plant Sci 4(145):1–6

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapis-Gaza HR, Jost R, Finnegan PM (2014) Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biol 14(334):1–19

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YVd, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-h, Wang Y-j, Wu B, Kong Y-b, Li W-l, Chang W-s, Zhang C-y (2014) GmPHR1, a novel homolog of the AtPHR1 transcription factor, plays a role in plant tolerance to phosphate starvation. J Integr Agr 13(12):2584–2593

    Article  CAS  Google Scholar 

  • Li LH, Guo N, Wu ZY, Zhao JM, Sun JT, Wang XT, Xing H (2015) P1BS, a conserved motif involved in tolerance to phosphate starvation in soybean. Genet Mol Res 14(3):9384–9394

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Huang TK, Chiou TJ (2013) Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25(10):4061–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling KS, Abdullah SNA, Ling HC, Amiruddin MD (2016) Molecular cloning, gene expression profiling and in silico sequence analysis of vitamin E biosynthetic genes from the oil palm. Plant Gene 5:100–108

    Article  CAS  Google Scholar 

  • Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62(3):508–517

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao X, Zhang L, Lu W, Li X, Xiao K (2013) TaPht1;4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Funct Plant Biol 40:329–341

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Chen S, Song A, Zhao S, Fang W, Guan Z, Liao Y, Jiang J, Chen F (2014) A putative high affinity phosphate transporter, CmPT1, enhances tolerance to Pi deficiency of chrysanthemum. BMC Plant Biol 14(18):1–9

    Google Scholar 

  • Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156(4):2141–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohidin H, Hanafi MM, Rafii YM, Abdullah SNA, Idris AS, Man S, Idris J, Sahebi M (2015) Determination of optimum levels of nitrogen, phosphorus and potassium of oil palm seedlings in solution culture. Bragantia 74(3):247–254

    Article  CAS  Google Scholar 

  • Nelson B, Kurischko C, Horecka J, Mody M, Nair P, Pratt L, Zougman A, McBroom LD, Hughes TR, Boone C, Luca FC (2003) RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Mol Biol Cell 14(9):3782–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2(83):1–12

    Google Scholar 

  • Omidvar V, Abdullah SNA, Ebrahimi M, Ho CL, Mahmood M (2013) Gene expression of the oil palm transcription factor EgAP2-1 during fruit ripening and in response to ethylene and ABA treatments. Biol Plant 57(4):646–654

    Article  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99(20):13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phosri C, Rodriguez A, Sanders IR, Jeffries P (2010) The role of mycorrhizas in more sustainable oil palm cultivation. Agric Ecosyst Environ 135(3):187–193

    Article  Google Scholar 

  • Prescott A, Martin C (1987) A rapid method for the quantitative assessment of levels of specific mRNAS in PLANTS. Plant Mol Biol Rep 4(4):219–224

    Article  CAS  Google Scholar 

  • Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, de Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J (2014) SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. PNAS 111(41):14947–14952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H (2012) Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS ONE 7(10):1–10

    Article  CAS  Google Scholar 

  • Qundan L, Yongjia Z, Yuguang W, Zhiye W, Li Z, Jing S, Zhongchang W, Yu L, Chuanzao M, Yi K, Ping W (2014) SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26(4):1586–1597

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB (2012) Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS ONE 7(8):e44005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan W, Guo M, Wu P, Yi K (2017) Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Mol Biol 93(3):327–340

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39(4):629–642

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Kaur M, Aggarwal S, Bhati KK, Kaur J, Mantri S, Pandey AK (2016) Tissue specific transcript profiling of wheat phosphate transporter genes and its association with phosphate allocation in grains. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Sobkowiak L, Bielewicz D, Malecka EM, Jakobsen I, Albrechtsen M, Szweykowska-Kulinska Z, Pacak A (2012) The role of the P1BS element containing promoter-driven genes in Pi transport and homeostasis in plants. Front Plant Sci 3(58):1–5

    Google Scholar 

  • Sun W, Cao Z, Li Y, Zhao Y, Zhang H (2007) A simple and effective method for protein subcellular localization using Agrobacterium-mediated transformation of onion epidermal cells. Biologia 62(5):529–532

    Article  CAS  Google Scholar 

  • Sun L, Song L, Zhang Y, Zheng Z, Liu D (2016) Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol 170(1):499–514

    Article  CAS  PubMed  Google Scholar 

  • Sundram S, Meon S, Seman IA, Othman R (2015) Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings. Mycorrhiza 25:387–397

    Article  CAS  PubMed  Google Scholar 

  • Tan NP, Zaharah AR, Siti Nor Akmar A, Jamaluddin N (2010) Evaluating the variability of gafsa phosphate rock uptake by oil palm genotypes at nursery stage. Pertanika J Trop Agric Sci 33(2):223–231

    Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes-Lopez O, Arenas-Huertero C, Ramirez M, Girard L, Sanchez F, Vance CP, Luis Reyes J, Hernandez G (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ 31(12):1834–1843

    Article  CAS  PubMed  Google Scholar 

  • Walder F, Brule D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205(4):1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bai J, Liu H, Sun Y, Shi X, Ren Z (2012) Overexpression of a maize transcription factor ZmPHR1 Improves Shoot Inorganic Phosphate Content And Growth Of Arabidopsis Under Low-Phosphate Conditions. Plant Mol Biol Rep 31(3):665–677

    Article  CAS  Google Scholar 

  • Wang J, Sun J, Miao J, Guo J, Shi Z, He M, Chen Y, Zhao X, Li B, Han F, Tong Y, Li Z (2013) A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann Bot 111(6):1139–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Y, Pineros MA, Wang Z, Wang W, Li C, Wu Z, Kochian LV, Wu P (2014) Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ 37(5):1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Lv S, Jiang P, Li Y (2017) Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci 8(817):1–14

    Google Scholar 

  • Wege S, Khan GA, Jung JY, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier Y (2016) The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal. Plant Physiol 170(1):385–400

    Article  CAS  PubMed  Google Scholar 

  • Woo J, MacPherson CR, Liu J, Wang H, Kiba T, Hannah MA, Wang X, Bajic VB, Chua N (2012) The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biol 12(62):1–22

    Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198:836–852

    Article  CAS  PubMed  Google Scholar 

  • Xue YB, Xiao BX, Zhu SN, Mo XH, Liang CY, Tian J, Liao H, Miriam G (2017) GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean. J Exp Bot 68(17):4951–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Finnegan PM (2010) Regulation of phosphate starvation responses in higher plants. Ann Bot 105(4):513–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Yuan J, Chang X, Yang M, Zhang L, Lu K, Lian X (2015) The phosphate transporter gene OsPht1;4 Is involved in phosphate homeostasis in rice. PLoS ONE 10(5):e0126186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138(4):2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wu X-N, Zhou H-M, Wang D-F, Jiang T-T, Sun Y-F, Cao Y, Pei W-X, Sun S-B, Xu G-H (2014) Overexpression of rice phosphate transporter gene OsPT6 enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 384:259–270

    Article  CAS  Google Scholar 

  • Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S (2015) Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J 82(4):556–569

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146(4):1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Ministry of Education, Malaysia under Trans Disciplinary Research Grant Scheme (TRGS) (TRGS/1/2016/UPM/01/6/1). MH was supported by Graduate Research Fellowship from Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nor Akmar Abdullah.

Ethics declarations

Conflict interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Y. Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzah, M.L., Abdullah, S.N.A. & Azzeme, A.M. Genome-wide molecular characterization of Phosphate Transporter 1 and Phosphate Starvation Response gene families in Elaeis guineensis Jacq. and their transcriptional response under different levels of phosphate starvation. Acta Physiol Plant 43, 113 (2021). https://doi.org/10.1007/s11738-021-03282-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03282-6

Keywords

Navigation