Skip to main content
Log in

Protective effect of a natural ally on simultaneous mild heat and salt episodes in maize seedlings

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Abiotic stresses occur together in several combinations in nature and do not usually act alone. However, studies on plants mainly are limited to a single stress type. Yet, atmospheric trends make it indispensable to expand approaches to investigate physiological consequences under multiple abiotic stresses. The potential of Melatonin (Mel) hydropriming on photosynthetic machinery and antioxidant system was investigated in this study. Mel hydropriming (0.1 mmol/mL) resulted in leaf photochemistry protection, which is characterized by maximum photochemical efficiency of PSII, photosynthetic pigments intactness, reactive oxygen species (ROS) scavenging enzymes activation accompanying depressed levels of endogenous hydrogen peroxide (H2O2) and membrane oxidation in maize seedlings at early vegetative stage under combination of 150 mM NaCl and 37 ± 3 °C mild heat. Mimicking nature by combining stresses is more realistic to study abiotic stress responses. High antioxidant capacity of melatonin can serve as a hydropriming substance to withstand simultaneous heat and salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1983) Catalase. In: Bergmeyer H (ed) Methods of enzymatic analysis. Weinheim-Verlag Chemie, Weinheim, pp 273–286

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2006) The physiological function of melatonin in plants. Plant Signal Behav 1:89–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bokszczanin KL, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol Colomb 20(2):223–235

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2016) Save and grow in practice maize rice wheat a guide to sustainable cereal production, Rome. http://www.fao.org/3/a i4009e.pdf. Accessed 4 Apr 2018

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B 137:55–66

    Article  CAS  PubMed  Google Scholar 

  • Kolodziejczyk I, Dzitko K, Szewcyk R, Posmyk MM (2016) Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J Plant Physiol 193:47–56

    Article  CAS  PubMed  Google Scholar 

  • Lack B, Daya S, Nyokong T (2001) Interaction of serotonin and melatonin with sodium, potassium, calcium, lithium and aluminium. J Pineal Res 31:102–108

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang C, Lu Q, Wen X, Lu C (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wei JP, Scott ER et al (2018) Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules 23:165

    Article  PubMed Central  Google Scholar 

  • Liang D, Gao F, Ni Z, Lin Z, Deng Q, Tang Y et al (2018) Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione s-transferase transcription. Molecules 6:23

    Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M et al (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535

    Article  PubMed Central  Google Scholar 

  • Nar H, Saglam A, Terzi R, Várkonyi Z, Kadioglu A (2009) Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica 47:429–436

    Article  CAS  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 36:6e14

    Google Scholar 

  • Paredes DS, Reiter RJ (2010) Melatonin: Helping cells cope with oxidative disaster. Cell Membr Free Radic Res 2:99–108

    Google Scholar 

  • Porra RJ, Thompson WA, Kriendemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 5:1–4

    Article  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Rukavtsova EB, Lebedeva AA, Zakharchenko NS, Buryanov YI (2013) The ways to produce biologically safe marker-free transgenic plants. Russ J Plant Physiol 60:14–26

    Article  CAS  Google Scholar 

  • Saraswat S, Yadav AK, Sirohi P, Singh NK (2017) Role of epigenetics in crop improvement: water and heat stress. J Plant Biol 60:231–240

    Article  CAS  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX et al (2015) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013a) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li H, Xu B, Li J, Huang B (2016) Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.). Front Plant Sci 7:1500

    PubMed  PubMed Central  Google Scholar 

  • Zhang YP, Yang SJ, Chen YY (2017) Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery. Biol Plant 61:571–578

    Article  CAS  Google Scholar 

  • Zheng XD, Tan DX, Allan AC, Zuo BX, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou JZ, Shan DQ, Li QT, Han ZH, Kong J (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was conducted with the grant provided by the Research Fund of Recep Tayyip Erdogan University (Project ID: 645).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Necla Pehlivan or Neslihan S. Guler.

Additional information

Communicated by S. Esposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pehlivan, N., Guler, N.S. Protective effect of a natural ally on simultaneous mild heat and salt episodes in maize seedlings. Acta Physiol Plant 40, 203 (2018). https://doi.org/10.1007/s11738-018-2781-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2781-x

Keywords

Navigation