Acta Physiologiae Plantarum

, 39:219 | Cite as

The role of potassium on maize leaf carbon exportation under drought condition

  • Elsa Martineau
  • Jean-Christophe Domec
  • Alexandre Bosc
  • Masako Dannoura
  • Yves Gibon
  • Camille Bénard
  • Lionel Jordan-MeilleEmail author
Original Article


Climate changes are mainly characterized by an increase in air temperature and a decrease in rainfalls. Potassium (K) nutrition is generally considered to alleviate plants tolerance to water deficit, especially by improving photosynthesis and phloem transport of carbohydrates from leaves to roots. The main objective of this study was to measure the effect of K on sugar transport and allocation under water-stressed conditions on maize (Zea mays L.). Maize plants were grown in pots under different water and K treatments. We used 13CO2 pulse-labelling to determine carbon exportation from leaves with δ13C analysis, within 1 week. The diurnal sugar content in leaves was measured, and net carbon assimilation accessed. Water deficit strongly reduced plant growth, while K nutrition appeared to be efficient in attenuating these effects. K deficiency significantly decreased starch content in leaves under well-watered but not under water-stressed treatment. A leaf carbon mass balance showed that K increased sugar export on a daily time scale, while instantaneous δ13C measurements did not show any significant effect, partly because of the very rapid δ13C decline after labelling. Our home-made labelling chamber proved to be successful in monitoring diurnal changes in δ13C for a C4 plant with high photosynthetic rates and fast carbon export, and also in determining the effect of a K deficiency on sugar export. Our results highlight a need for research into carbon export on leaves of different ages in fast-growing crops under the combined effect of water and nutrient stress.


Water deficit Sugar transport Carbon export Pulse-labelling Zea mays L. 



The financial support for this study was provided by K+S KALI, France and Bordeaux Sciences Agro, France. We acknowledge the measurements provided by the Centre for Stable Isotope Research and Analysis at the University of Göttingen for stable isotope analysis. We would also like to thank the staff of INRA ISPA for technical assistance. We also greatly thank Ray Godfray for improving the readiness of the whole manuscript.


  1. Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155:64–69. doi: 10.1104/pp.110.167684 CrossRefPubMedGoogle Scholar
  2. Andersen MN, Jensen CR, Lösch R (1992) The interaction effects of potassium and drought in field-grown barley. II. Nutrient relations, tissue water content and morphological development. Acta Agric Scand Sect B Soil Plant Sci 42:45–56. doi: 10.1080/09064719209410198 Google Scholar
  3. Armengaud P, Sulpice R, Miller AJ et al (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150:772–785. doi: 10.1104/pp.108.133629 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arquero O, Barranco D, Benlloch M (2006) Potassium starvation increases stomatal conductance in olive trees. HortScience 41:433–436Google Scholar
  5. Bahrani A, Pourreza J, Madani A, Amiri F (2012) Effect of PRD irrigation method and potassium fertilizer application on corn yield and water use efficiency. Bulg J Agric Sci 18:616–625Google Scholar
  6. Barraclough PB, Leigh RA (1993) Grass yield in relation to potassium supply and the concentration of cations in tissue water. J Agric Sci 121:157–168. doi: 10.1017/S0021859600077017 CrossRefGoogle Scholar
  7. Battie-Laclau P, Laclau JP, de Piccolo MC et al (2013) Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant Soil 371:19–35. doi: 10.1007/s11104-013-1663-7 CrossRefGoogle Scholar
  8. Battie-Laclau P, Laclau J-P, Domec J-C et al (2014a) Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. New Phytol 203:401–413. doi: 10.1111/nph.12810 CrossRefPubMedGoogle Scholar
  9. Battie-Laclau P, Laclau JP, Beri C et al (2014b) Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ 37:70–81. doi: 10.1111/pce.12131 CrossRefPubMedGoogle Scholar
  10. Battie-Laclau P, Delgado-Rojas JS, Christina M et al (2016) Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. For Ecol Manag 364:77–89. doi: 10.1016/j.foreco.2016.01.004 CrossRefGoogle Scholar
  11. Bednarz CW, Oosterhuis DM, Evans RD (1998) Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot 39:131–139. doi: 10.1016/S0098-8472(97)00039-7 CrossRefGoogle Scholar
  12. Benlloch-González M, Arquero O, Fournier JM et al (2008) K+ starvation inhibits water-stress-induced stomatal closure. J Plant Physiol 165:623–630. doi: 10.1016/j.jplph.2007.05.010 CrossRefPubMedGoogle Scholar
  13. Benlloch-González M, Romera J, Cristescu S et al (2010) K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. J Exp Bot 61:1139–1145. doi: 10.1093/jxb/erp379 CrossRefPubMedGoogle Scholar
  14. Biais B, Bénard C, Beauvoit B et al (2014) Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol 164:1204–1221. doi: 10.1104/pp.113.231241 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blessing CH, Werner RA, Siegwolf R, Buchmann N (2015) Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiol 35:585–598. doi: 10.1093/treephys/tpv024 CrossRefPubMedGoogle Scholar
  16. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159. doi: 10.1071/AR05069 CrossRefGoogle Scholar
  17. Bornot Y, Jordan-Meille L, Domec J-C (2013) Potassium nutrition and water supply interaction in maize (Zea mays L.): effects and processes. Master Univ Bordeaux, Bordeaux, pp 1–21Google Scholar
  18. Braun DM, Slewinski TL (2009) Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol 149:71–81. doi: 10.1104/pp.108.129049 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530. doi: 10.1002/jpln.200420485 CrossRefGoogle Scholar
  20. Cakmak I, Hengeler C, Marschner H (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257. doi: 10.1093/jxb/45.9.1251 CrossRefGoogle Scholar
  21. Carroll MJ, Slaughter LH, Krouse JM (1994) Turgor potential and osmotic constituents of Kentucky bluegrass leaves supplied with four levels of potassium. Agron J 86:1079–1083. doi: 10.2134/agronj1994.00021962008600060028x CrossRefGoogle Scholar
  22. Christina M, Le Maire G, Battie-Laclau P et al (2015) Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations. Glob Chang Biol 21:2022–2039. doi: 10.1111/gcb.12817 CrossRefPubMedGoogle Scholar
  23. Cochard H (2002) Xylem embolism and drought-induced stomatal closure in maize. Planta 215:466–471. doi: 10.1007/s00425-002-0766-9 CrossRefPubMedGoogle Scholar
  24. Cochrane TT, Cochrane TA (2009) Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation. Plant Physiol Biochem 47:205–209. doi: 10.1016/j.plaphy.2008.11.006 CrossRefPubMedGoogle Scholar
  25. Comeau L-P, Lemke RL, Knight JD, Bedard-Haughn A (2013) Carbon input from 13C-labeled crops in four soil organic matter fractions. Biol Fertil Soils 49:1179–1188. doi: 10.1007/s00374-013-0816-4 CrossRefGoogle Scholar
  26. Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  27. Deeken R, Geiger D, Fromm J et al (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344. doi: 10.1007/s00425-002-0895-1 CrossRefPubMedGoogle Scholar
  28. del Amor FM, Marcelis LF (2004) Regulation of K uptake, water uptake, and growth of tomato during K starvation and recovery. Sci Hortic (Amst) 100:83–101. doi: 10.1016/j.scienta.2003.08.018 CrossRefGoogle Scholar
  29. Doman DC, Geiger DR (1979) Effect of exogenously supplied foliar potassium on phloem loading in Beta vulgaris L. Plant Physiol 64:528–533. doi: 10.1104/pp.64.4.528 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Egilla JN, Davies FT Jr, Drew MC (2001) Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: plant growth, leaf macro- and micronutrient content and root longevity. Plant Soil 229:213–224. doi: 10.1023/A:1004883032383 CrossRefGoogle Scholar
  31. Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43:135–140. doi: 10.1007/s11099-005-5140-2 CrossRefGoogle Scholar
  32. El Dessougi H, Claassen N, Steingrobe B (2002) Potassium efficiency mechanisms of wheat, barley, and sugar beet grown on a K fixing soil under controlled conditions. J Plant Nutr Soil Sci 165:732–737. doi: 10.1002/jpln.200290011 CrossRefGoogle Scholar
  33. Epron D, Bahn M, Derrien D et al (2012) Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol 32:776–798. doi: 10.1093/treephys/tps057 CrossRefPubMedGoogle Scholar
  34. Epron D, Cabral OMR, Laclau JP et al (2015) In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiol 36:6–21. doi: 10.1093/treephys/tpv090 CrossRefPubMedGoogle Scholar
  35. Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214. doi: 10.1007/BF00029330 CrossRefGoogle Scholar
  36. Fischer RA, Hsiao TC (1968) Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption. Plant Physiol 43:1953–1958CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fritz E, Evert RF, Nasse H (1989) Loading and transport of assimilates in different maize leaf bundles—digital image analysis of 14C-microautoradiographs. Planta 178:1–9. doi: 10.1007/BF00392520 CrossRefPubMedGoogle Scholar
  38. Gamnitzer U, Schäufele R, Schnyder H (2009) Observing 13C labelling kinetics in CO2 respired by a temperate grassland ecosystem. New Phytol 184:376–386. doi: 10.1111/j.1469-8137.2009.02963.x CrossRefPubMedGoogle Scholar
  39. Gerardeaux E, Saur E, Constantin J et al (2009) Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant Soil 324:329–343. doi: 10.1007/s11104-009-9950-z CrossRefGoogle Scholar
  40. Giaquinta R (1980) Mechanism and control of phloem loading of sucrose. Berichte der Deutschen Botanischen Gesellschaft 93:187–201Google Scholar
  41. Gong XY, Berone GD, Agnusdei MG et al (2014) The allocation of assimilated carbon to shoot growth: in situ assessment in natural grasslands reveals nitrogen effects and interspecific differences. Oecologia 174:1085–1095. doi: 10.1007/s00442-013-2838-x CrossRefPubMedGoogle Scholar
  42. Grzebisz W, Gransee A, Szczepaniak W, Diatta J (2013) The effects of potassium fertilization on water-use efficiency in crop plants. J Plant Nutr Soil Sci 176:355–374. doi: 10.1002/jpln.201200287 CrossRefGoogle Scholar
  43. Hendriks JHM, Kolbe A, Gibon Y et al (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838–849. doi: 10.1104/pp.103.024513 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617. doi: 10.1016/j.tplants.2006.10.007 CrossRefPubMedGoogle Scholar
  45. Hoffmann CM (2010) Sucrose accumulation in sugar beet under drought stress. J Agron Crop Sci 196:243–252. doi: 10.1111/j.1439-037X.2009.00415.x Google Scholar
  46. Hofstra G, Nelson CD (1969) The translocation of photosynthetically assimilated 14C in corn. Can J Bot 47:1435–1442CrossRefGoogle Scholar
  47. Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570. doi: 10.1146/annurev.pp.24.060173.002511 CrossRefGoogle Scholar
  48. Hsiao TC, Acevedo E (1974) Plant responses to water deficits, water-use efficiency, and drought resistance. Agric Meteorol 14:59–84. doi: 10.1016/0002-1571(74)90011-9 CrossRefGoogle Scholar
  49. Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Water Stress, Growth, and Osmotic Adjustment. Philos Trans R Soc B Biol Sci 273:479–500. doi: 10.1098/rstb.1976.0026 CrossRefGoogle Scholar
  50. Huber SC (1985) Role of potassium in photosynthesis and respiration. In: Munson RD (ed) Potassium agriculture. American Society of Agronomiy, Madison, WI, pp 339–369Google Scholar
  51. IPCC (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, SwitzerlandGoogle Scholar
  52. Itoh R, Yamagishi J, Ishii R (1997) Effects of potassium deficiency on leaf growth, related water relations and accumulation of solutes in leaves of soybean plants. Jpn J Crop Sci 66:691–697. doi: 10.1248/cpb.37.3229 CrossRefGoogle Scholar
  53. Jákli B, Tränkner M, Senbayram M, Dittert K (2016) Adequate supply of potassium improves plant water-use efficiency but not leaf water-use efficiency of spring wheat. J Plant Nutr Soil Sci. doi: 10.1002/jpln.201600340 Google Scholar
  54. Jelitto T, Sonnewald U, Willmitzer L et al (1992) Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta 188:238–244. doi: 10.1007/BF00216819 CrossRefPubMedGoogle Scholar
  55. Jordan-Meille L, Pellerin S (2008) Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency. Plant Soil 304:157–168. doi: 10.1007/s11104-007-9534-8 CrossRefGoogle Scholar
  56. Kaldy J, Brown C, Andersen C (2013) In situ 13C tracer experiments elucidate carbon translocation rates and allocation patterns in eelgrass Zostera marina. Mar Ecol Prog Ser 487:27–39. doi: 10.3354/meps10354 CrossRefGoogle Scholar
  57. Kim JY, Mahé A, Brangeon J, Prioul JL (2000) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84. doi: 10.1104/PP.124.1.71 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:288–298. doi: 10.1016/j.pbi.2010.02.001 CrossRefPubMedGoogle Scholar
  59. Leigh RA, Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13. doi: 10.1111/j.1469-8137.1984.tb04103.x CrossRefGoogle Scholar
  60. Lemoine R, La Camera S, Atanassova R et al (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272. doi: 10.3389/fpls.2013.00272 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lindhauer MG (1985) Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.). Zeitschrift für Pflanzenernährung und Bodenkd 148:654–669. doi: 10.1002/jpln.19851480608 CrossRefGoogle Scholar
  62. Marschner H (1995) Functions of mineral nutrients: macronutrients. In: Mineral nutrition of higher plants, 2nd edn. Elsevier, pp 229–312Google Scholar
  63. Marschner H, Kirkby E, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47(Spec No.):1255–1263. doi: 10.1093/jxb/47.Special_Issue.1255 CrossRefPubMedGoogle Scholar
  64. Martineau E, Domec J-C, Bosc A et al (2017) The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environ Exp Bot 134:62–71. doi: 10.1016/j.envexpbot.2016.11.004 CrossRefGoogle Scholar
  65. Mengel K, Arneke WW (1982) Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiol Plant 54:402–408. doi: 10.1111/j.1399-3054.1982.tb00699.x CrossRefGoogle Scholar
  66. Munns R (1988) Why measure osmotic adjustment? Aust J Plant Physiol 15:717. doi: 10.1071/PP9880717 CrossRefGoogle Scholar
  67. Pastenes C, Villalobos L, Ríos N et al (2014) Carbon partitioning to berries in water stressed grapevines: the role of active transport in leaves and fruits. Environ Exp Bot 107:154–166. doi: 10.1016/j.envexpbot.2014.06.009 CrossRefGoogle Scholar
  68. Peaslee DE, Moss DN (1968) Stomatal conductivities in K-deficient leaves of maize (Zea mays L.). Crop Sci 8:427. doi: 10.2135/cropsci1968.0011183X000800040010x CrossRefGoogle Scholar
  69. Pelleschi S, Rocher J-P, Prioul J-L (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ 20:493–503. doi: 10.1046/j.1365-3040.1997.d01-89.x CrossRefGoogle Scholar
  70. Pettigrew WT (1999) Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron J 91:962–968CrossRefGoogle Scholar
  71. Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681. doi: 10.1111/j.1399-3054.2008.01073.x CrossRefPubMedGoogle Scholar
  72. Philippar K, Büchsenschütz K, Abshagen M et al (2003) The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J Biol Chem 278:16973–16981. doi: 10.1074/jbc.M212720200 CrossRefPubMedGoogle Scholar
  73. Reinsch S, Ambus P (2013) In situ 13CO2 pulse-labeling in a temperate heathland—development of a mobile multi-plot field setup. Rapid Commun Mass Spectrom 27:1417–1428. doi: 10.1002/rcm.6584 CrossRefPubMedGoogle Scholar
  74. Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180. doi: 10.1007/s11104-010-0520-1 CrossRefGoogle Scholar
  75. Sen Gupta A, Berkowitz GA, Pier PA (1989) Maintenance of photosynthesis at low leaf water potential in wheat: role of potassium status and irrigation history. Plant Physiol 89:1358–1365. doi: 10.1104/pp.89.4.1358 CrossRefGoogle Scholar
  76. Setter TL, Meller VH (1984) Reserve carbohydrate in maize stem: [C]glucose and [C]sucrose uptake characteristics. Plant Physiol 75:617–622. doi: 10.1104/pp.75.3.617 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892. doi: 10.1093/jxb/ern335 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384. doi: 10.1104/pp.47.3.380 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Suwa R, Hakata H, Hara H et al (2010) High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem 48:124–130. doi: 10.1016/j.plaphy.2009.12.010 CrossRefPubMedGoogle Scholar
  80. Tomè E, Tagliavini M, Scandellari F (2015) Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. J Plant Physiol 179:83–89. doi: 10.1016/j.jplph.2015.02.008 CrossRefPubMedGoogle Scholar
  81. Triboulot MB, Pritchard J, Levy G (1997) Effects of potassium deficiency on cell water relations and elongation of tap and lateral roots of maritime pine seedlings. New Phytol 135:183–190. doi: 10.1046/j.1469-8137.1997.00647.x CrossRefGoogle Scholar
  82. Tsonev T, Velikova V, Yildiz-Aktas L et al (2011) Effect of water deficit and potassium fertilization on photosynthetic activity in cotton plants. Plant Biosyst Int J Deal Asp Plant Biol 145:841–847. doi: 10.1080/11263504.2011.560199 Google Scholar
  83. Van Volkenburgh E, Boyer JS (1985) Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol 77:190–194. doi: 10.1104/PP.77.1.190 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390. doi: 10.3390/ijms14047370 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Warren JM, Iversen CM, Garten CT et al (2012) Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Tree Physiol 32:799–813. doi: 10.1093/treephys/tpr129 CrossRefPubMedGoogle Scholar
  86. Zhao D, Oosterhuis DM, Bednarz CW (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109. doi: 10.1023/A:1012404204910 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2017

Authors and Affiliations

  • Elsa Martineau
    • 1
  • Jean-Christophe Domec
    • 1
  • Alexandre Bosc
    • 1
  • Masako Dannoura
    • 2
  • Yves Gibon
    • 3
  • Camille Bénard
    • 3
  • Lionel Jordan-Meille
    • 1
    • 4
    Email author
  1. 1.Bordeaux Sciences Agro, INRA, UMR ISPA-1391Villenave d’OrnonFrance
  2. 2.Laboratory of Forest Utilization, Department of Forest and Biomaterial Science, Graduate School of AgricultureKyoto UniversityKyotoJapan
  3. 3.INRA, UMR 1332, Biologie du Fruit et Pathologie and Plateforme MétabolomeVillenave d’OrnonFrance
  4. 4.Bordeaux Sciences AgroGradignan CedexFrance

Personalised recommendations