Skip to main content
Log in

Comparative metabolic profiling of four transgenic maize lines and two non-transgenic maize lines using high-performance liquid chromatography mass spectrometry

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We compared metabolic changes in transgenic maize lines (differing in genetic backgrounds and exogenous genes insertion) with non-transgenic counterparts. At the corn seedling stage, entirely expanding leaves were obtained from maize lines 1 (transgenic maize SK12-5; overexpressing cry1Ab/cry2Aj; parental maize ZD958), 2 (transgenic maize IE034; overexpressing cry1Ie; parental maize ZD958), 3 (transgenic maize Bt799; overexpressing cry1Ac-M; parental maize Z58), 4 (transgenic maize Bt799; overexpressing cry1Ac-M; parental maize ZD958), 5 (non-transgenic maize Z58), and 6 (non-transgenic maize ZD958). For each line, six biological replicates were prepared; each contained an entirely expanded leaf at the top of the plant. Metabolites were identified with high-performance liquid chromatography mass spectrometry in three comparison groups (4 transgenic maize lines vs. their corresponding controls, line 3 vs. 4, and transgenic vs. non-transgenic maize). Top 200 cationic and top 200 anionic metabolites with higher variable importance in projection value were chosen for principal component analysis, followed by pathway enrichment analysis. Annotation was possible for 227 of 400 metabolites. Twelve up- and 26 down-regulated overlapping metabolites were identified in line 1 vs. 6, line 2 vs. 6, and line 4 vs. 6 comparison groups. Altered metabolites significantly enriched in purine and glutathione metabolism pathways, but no pathways were enriched in line 3 vs. 4. Comparing transgenic and non-transgenic maize lines revealed 59 up- and 37 down-regulated metabolites, which were also significantly enriched in purine and glutathione metabolism pathways. Therefore, transgenic Bt maize differed metabolically from non-transgenic maize. Additionally, purine and glutathione metabolism pathways may be important in the transgenic maize metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asiago VM, Jan H, Teresa H, Cathy Z (2012) Effects of genetics and environment on the metabolome of commercial maize hybrids: a multisite study. J Agric Food Chem 60:11498–11508

    Article  CAS  PubMed  Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    Article  CAS  PubMed  Google Scholar 

  • Bretscher MS (1972) Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol 236:11–12

    Article  CAS  PubMed  Google Scholar 

  • Cao KaL, Boitard S, Besse Philippe (2011) Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform 12:1–17

    Article  CAS  Google Scholar 

  • Castagnola AS, Jurat-Fuentes JL (2012) Bt crops: past and future. Bacillus thuringiensis biotechnology. Springer, New York, pp 283–304

    Chapter  Google Scholar 

  • Chang Y, Zhao C, Zhu Z et al (2012) Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Mol Biol 78:477–487

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Liu G, He K, Shen Z, Peng Y, Ye G (2013) Efficacy evaluation of two transgenic maize events expressing fused proteins to Cry1Ab-susceptible and-resistant Ostrinia furnacalis (Lepidoptera: Crambidae). J Econ Entomol 106:2548–2556

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank T, Röhlig RM, Davies HV, Barros E, Engel KH (2012) Metabolite profiling of maize kernels—genetic modification versus environmental influence. J Agric Food Chem 60:3005–3012

    Article  CAS  PubMed  Google Scholar 

  • Gemperline E, Jayaraman D, Maeda J, Ané JM, Li L (2015) Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. J Am Soc Mass Spectrom 26:149–158

    Article  CAS  PubMed  Google Scholar 

  • Gentleman R, Carey V, Huber W, Hahne F (2007) Genefilter: genefilter: methods for filtering genes from microarray experiments. R package version 1

  • Guo Y, Feng Y, Ge Y, Tetreau G, Chen X, Dong X, Shi W (2014) The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods. PLos One 9:e114228

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Q-Y, He L-X, Zhu H, Shang J-L, Zhu L-Y, Wang J-B, Li Y (2015) Effects of 90-day feeding of transgenic maize BT799 on the reproductive system in male Wistar rats. Int J Environ Res Public Health 12:15309–15320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschlag F (2012) 3. Peach (Prunus persica L. Batsch). Trees I 1:170

    Google Scholar 

  • Hammond JP, Broadley MR, Craigon DJ et al (2005) Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Han J, Wang L, Zheng H, Pan X, Li H, Chen F, Li X (2015) ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta 242:935–949

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG, Venkatesh TV, Leibman M et al (2016) Evaluation of metabolomics profiles of grain from maize hybrids derived from near-isogenic GM positive and negative segregant inbreds demonstrates that observed differences cannot be attributed unequivocally to the GM trait. Metabolomics 12:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman RA, Price WD (2013) Unintended compositional changes in genetically modified (GM) crops: 20 years of research. J Agric Food Chem 61:11695–11701

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–114

    Article  CAS  PubMed  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35:441–453

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kumari R (2015) Occurrence of molecularly diverse Bt Cry toxin-resistant mutations in insect pests of Bt+ corn and cotton crops and remedial approaches. Curr Sci 00113891:108

    Google Scholar 

  • Liang L, He X, Liu G, Tan H (2008) The role of a purine-specific nucleoside hydrolase in spore germination of Bacillus thuringiensis. Microbiology 154:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29:1830–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo ALDA, Soccol VT, Soccol CR (2014) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326

    Article  PubMed  Google Scholar 

  • Misra P, Pandey A, Tiwari M et al (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motsingerreif AA, Zhu H, Kling MA et al (2013) Comparing metabolomic and pathologic biomarkers alone and in combination for discriminating Alzheimer’s disease from normal cognitive aging. Acta Neuropathol Commun 1:1–9

    Google Scholar 

  • Pongsuwan W, Fukusaki E, Bamba T, Yonetani T, Yamahara T, Kobayashi A (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J Agric Food Chem 55:231–236

    Article  CAS  PubMed  Google Scholar 

  • Prado JR, Segers G, Voelker T et al (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Tan D-X, Reiter RJ, Shi H (2015) Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci Rep 5:15815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quanbeck SM, Brachova L, Campbell AA et al (2012) Metabolomics as a hypothesis-generating functional genomics tool for the annotation of Arabidopsis thaliana genes of “unknown function”. Front Plant Sci 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Quraishi A, Hussain I, Ahmed M, Rashid H, Latif M (1997) Sustained multiplication of long term embryogenic cultures of date palm and their field performance. Pak J Bot 29:135–142

    Google Scholar 

  • Rao J, Yang L, Guo J et al (2016) Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Rep 35:429–437

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Sato D, Sugimoto M, Akashi H, Tomita M, Soga T (2014) Comparative metabolite profiling of foxglove aphids (Aulacorthum solani Kaltenbach) on leaves of resistant and susceptible soybean strains. Mol Biosyst 10:909–915

    Article  CAS  PubMed  Google Scholar 

  • Simó C, Ibáñez C, Valdés A, Cifuentes A, Garcíacañas V (2013) Metabolomics of genetically modified crops. Int J Mol Sci 15:18941–18966

    Article  Google Scholar 

  • Simó C, Ibáez C, Valdés A, Cifuentes A, García-Cañas V (2014) Metabolomics of genetically modified crops. Int J Mol Sci 15:18941–18966

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  PubMed  Google Scholar 

  • Tianpei X, Zhu Y, Li S (2014) Optimized scorpion polypeptide LMX: a pest control protein effective against rice leaf folder. PLoS One 9(6):e100232

    Article  PubMed  PubMed Central  Google Scholar 

  • Tohidfar M, Khosravi S (2015) Transgenic crops with an improved resistance to biotic stresses. A review. BASE 19:62–80

    CAS  Google Scholar 

  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell. Tissue Organ Cult (PCTOC) 113:227–235

    Article  CAS  Google Scholar 

  • Wishart DS, Jewison T, Guo AC et al (2012) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu C-H, Huang S-M, Lin J-A, Yen G-C (2011) Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2:224–234

    Article  CAS  PubMed  Google Scholar 

  • Xie GX, Ni Y, Su MM et al (2008) Application of ultra-performance LC-TOF MS metabolite profiling techniques to the analysis of medicinal Panax herbs. Metabolomics 4:248–260

    Article  CAS  Google Scholar 

  • Zhang CL, Xu DC, Jiang XC et al (2008) Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Ann Appl Biol 152:143–156

    Article  CAS  Google Scholar 

  • Zhang Y, Liu Y, Ren Y et al (2013) Overexpression of a novel Cry1Ie gene confers resistance to Cry1Ac-resistant cotton bollworm in transgenic lines of maize. Plant Cell Tissue Organ Cult (PCTOC) 115:151–158

    Article  CAS  Google Scholar 

  • Zhao YY, Wang HL, Cheng XL, Wei F, Bai X, Lin RC, Vaziri ND (2015) Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci Rep 5:12936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Transgenic Plant Special Fund (2016ZX08012-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyun Hao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Additional information

Communicated by M. Hajduch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2017_2468_MOESM1_ESM.tif

Supplementary Fig. 1 Representative chromatograms produced from HPLC separations of leaf extract. (A) Positive ion mode. (B) Negative ion mode. Different colors represent 3 separate samplings (TIFF 13217 kb)

11738_2017_2468_MOESM2_ESM.tif

Supplementary Fig. 2 PCA including all metabolites. Points with different colors indicate different samples (TIFF 731 kb)

Supplementary Table 1 The results of random forest calculation (XLSX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Li, F., Yan, W. et al. Comparative metabolic profiling of four transgenic maize lines and two non-transgenic maize lines using high-performance liquid chromatography mass spectrometry. Acta Physiol Plant 39, 167 (2017). https://doi.org/10.1007/s11738-017-2468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2468-8

Keywords

Navigation