Skip to main content
Log in

Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

As a primary characteristic of substantial equivalence, the evaluation of unintended effects of genetically modified plants has been evolving into an important field of research. In this study, a metabolic profiling method for rice seeds was developed using rapid resolution liquid chromatography/quadrupole time-of-flight mass spectrometry. The analytical properties of the method, including the linearity, reproducibility, intra-day precision and inter-day precision, were investigated and were found to be satisfactory. The method was then applied to investigate the differences between transgenic rice and its native counterparts, in addition to the differences found between native rice with different sowing dates or locations. Global metabolic phenotype differences were visualized, and metabolites from different discriminated groups were discovered using multivariate data analysis. The results indicated that environmental factors played a greater role than gene modification for most metabolites, including tryptophan, 9,10,13-trihydroxyoctadec-11-enoic acid, and lysophosphatidylethanolamine 16:0. The concentrations of phytosphingosine, palmitic acid, 5-hydroxy-2-octadenoic acid and three other unidentified metabolites varied slightly due to gene modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arjol IM, Galia MB, Bermudo E, Garcia F, Manresa A (2010) Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem Phys Lipids 163:341–346

    Article  Google Scholar 

  • Begley P, Francis-Mclntyre S, Dunn WB, Broadhurst DI, Halsall A, Tseng A, Knowles J, Consortium H, Goodacre R, Kell DB (2009) Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal Chem 81:7038–7046

    Article  PubMed  CAS  Google Scholar 

  • Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. PNAS 102:14458–14462

    Article  PubMed  CAS  Google Scholar 

  • Chen LY, Snow AA, Wang F, Lu BR (2006) Effects of insect-resistance transgenes on fecundity in rice (Oryza sativa, poaceae): a test for underlying costs. Am J Bot 93:94–101

    Article  Google Scholar 

  • Cowan AK (2006) Phospholipids as plant growth regulators. Plant Growth Regul 48:97–109

    Article  CAS  Google Scholar 

  • Gall GL, Dupont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003) Characterization and content of flavonoid glycosides in genetically modified tomato (lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446

    Article  PubMed  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • García-Villalba R, León C, Dinelli G, Segura-Carretero A, Fernández-Gutiérrez A, Garcia-Cañas V, Cifuentes A (2008) Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. J Chromatogr A 1195(1–2):164–173

    Article  PubMed  Google Scholar 

  • Gatehouse AMR, Boulter D (1983) Assessment of the anti-metabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus. J Sci Food Agric 34:345–350

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Shi Y, Powell KS, Brough C, Hilder VA, Hamilton WDO, Newell CA, Merryweather A, Boulter D, Gatehouse JA (1993) Approaches to insect resistance using transgenic plants. Philos Trans R Soc Lond B 342:279–286

    Article  Google Scholar 

  • Harrigan GG, Stork LG, Riordan SG, Reynolds TL, Ridley WP, Masucci JD, Macisaac S, Halls SC, Orth R, Smith RG, Wen L, Brown WE, Welsch M, Riley R, McFarland D, Pandravada A, Glenn KC (2007) Impact of genetics and environment on nutritional and metabolite components of maize grain. J Agric Food Chem 55(15):6177–6185

    Article  PubMed  CAS  Google Scholar 

  • Ioset JR, Urbaniak B, Ioset KN, Wirth J, Martin F, Gruissem W, Hostettmann K, Sautter C (2007) Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol Biol 65:645–654

    Article  PubMed  CAS  Google Scholar 

  • Jiao Z, Si XX, Li GK, Zhang ZM, Xu XP (2010) Unintended compositional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods. J Agric Food Chem 58:1746–1754

    Article  PubMed  CAS  Google Scholar 

  • Kitta K, Ebihara M, Iizuka T, Yoshikawa R, Isshiki K, Kawamoto S (2005) Variations in lipid content and fatty acid composition of major non-glutinous rice cultivars in Japan. J Food Compos Anal 18:269–278

    Article  CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPher-son K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11:194–200

    Article  CAS  Google Scholar 

  • Leon C, Rodriguez-Meizoso I, Lucio M, Garcia-Cañas V, Ibañez E, Schmitt-Kopplin P, Cifuentes A (2009) Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A 1216(43):7314–7323

    Article  PubMed  CAS  Google Scholar 

  • Levandi T, Leon C, Kaljurand M, Canas VG, Cifuentes A (2008) Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80:6329–6335

    Article  PubMed  CAS  Google Scholar 

  • Li X, Huang K, He X, Zhu B, Liang Z, Li H, Luo Y (2007) Comparison of nutritional quality between Chinese Indica rice with sck and cry1Ac Genes and Its Nontransgenic Counterpart. J Food Sci 72:S420–S424

    Article  PubMed  CAS  Google Scholar 

  • Li X, He XY, Luo YB, Xiao GY, Jiang XB, Huang KL (2008) Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart. J Food Comp Anal 21:535–539

    Article  CAS  Google Scholar 

  • Liu YF, Su J, You MS, Wang Q, Hu SQ, Liu WH, Zhao SX, Wang F (2005a) Effect of transgenic pest-resistant rice on pest insect communities in paddy fields. Acta Entomol Sin 48:544–553

    Article  Google Scholar 

  • Liu YF, Wang F, You MS, Wang Q, Hu SQ, Liu WH, Zhao SX (2005b) Resistance of cry1Ac + sck transgenic rice and its filial generation to the rice leaf roller cnaphalocrocis medinalis. Scient Agric Sin 38:725–729

    Google Scholar 

  • Liu CX, Hao FH, Hu J, Zhang WL, Wan LL, Zhu LL, Tang HR, He GC (2010) Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. J Proteome Res 9:6774–6785

    Article  PubMed  CAS  Google Scholar 

  • Momma K, Hashimoto W, Ozawa S, Kawai S, Katsube T, Takaiwa F, Kito M, Utsumi S, Murata K (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: Analyses of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem 63:314–318

    Article  PubMed  CAS  Google Scholar 

  • Novak WK, Haslberger AG (2000) Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food Chem Toxicol 38(6):473–483

    Article  PubMed  CAS  Google Scholar 

  • OECD Organization for Economic Co-Operation and Development (1993) Safety evaluation of foods derived by modern biotechnology: concepts and principles. OECD, Paris. http://www.oecd.org/pdf/M00034000/M00034525.pdf

  • Reynolds TL, Nemeth MA, Glenn KC, Ridley WP, Astwood JD (2005) Natural variability of metabolites in maize grain: differences due to genetic background. J Agric Food Chem 53(26):10061–10067

    Article  PubMed  CAS  Google Scholar 

  • Rohlig RM, Eder J, Engel K (2009) Metabolite profiling of maize grain: differentiation due to genetics and environment. Metabolomics 5:459–477

    Article  Google Scholar 

  • SA EF (2008) Report of the EFSA GMO panel working group on animal feeding trials. Food Chem Toxicol 46:S2–S70

    Google Scholar 

  • Schnepf E, Crickmore N, Vanrie J, Lereclus D, Baum J, Feitelson J, Zeigler DG, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Shepherd LVT, McNicol JW, Razzo R, Taylor MA, Davies HV, McNicol JW (2006) Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res 15:409–425

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Tsuyama M, Takami T, Shimizu H, Kobayashi Y (2004) Accumulation of menaquinones with incompletely reduced side chains and loss of a-tocopherol in rice mutants with alternations in the chlorophyll moiety. J Exp Bot 55:1989–1996

    Article  PubMed  CAS  Google Scholar 

  • Smilde AK, Werf MJVD, Bijlsma S, der Vat BJC, Jellema RH (2005) Fusion of mass spectrometry-based metabolomics data. Anal Chem 77:6729–6736

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Hirose S, Yasuda H, Takaiwa F (2006) Biochemical safety evaluation of transgenic rice seeds expressing T cell epitopes of Japanese cedar pollen allergens. J Agric Food Chem 54:9901–9905

    Article  PubMed  CAS  Google Scholar 

  • Whalon ME, Wingerd BA (2003) Bt: Mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  PubMed  CAS  Google Scholar 

  • Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405

    Article  Google Scholar 

  • Wu ZM, Li M, Zhao CX, Zhou J, Chang YW, Li X, Gao P, Lu X, Li YS, Xu GW (2010) Urinary metabonomics study in a rat model in response to protein-energy malnutrition by using gas chromatography-mass spectrometry and liquid chromatography–mass spectrometry. Mol BioSyst 6:2157–2163

    Article  PubMed  CAS  Google Scholar 

  • Xu QS, Liang YZ (2001) Monte Carlo cross validation. Chemom Intell Lab Syst 56:1–11

    Article  CAS  Google Scholar 

  • Zelena E, Dunn WB, Broadhurst D, Francis-Mclntyre S, Carroll KM, Begley P, O’Hagan S, Knowles J, Halsall A, Consortium H, Wilson ID, Kell DB (2009) Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal Chem 81:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Ma CF, Xu HL, Yuan KL, Lu X, Zhu Z, Wu YN, Xu GW (2009) Metabolic profiling of transgenic rice with cry1Ac and sck genes: An evaluation of unintended effects at metabolic level by using GC-FID and GC–MS. J Chromatogr B 877:725–732

    Article  CAS  Google Scholar 

  • Zhu Z (2001) Research and development of highly insect-resistant transgenic rice. Bull Chin Acad Sci 16:353–357

    Google Scholar 

  • Zywicki B, Catchpolea G, Draper J, Fiehn O (2005) Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. Anal Biochem 336:178–186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the National Basic Research Program of China (2007CB109201), National Grand Project of Science and Technology (2008ZX08012-002, 2011ZX08012-002), and the National Natural Science Foundation of China (No. 21075122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxia Zhao or Guowang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 182 kb)

Supplementary material 2 (XLS 455 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Zhao, C., Zhu, Z. et al. Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Mol Biol 78, 477–487 (2012). https://doi.org/10.1007/s11103-012-9876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9876-3

Keywords

Navigation