Skip to main content
Log in

Gene expression analysis in drought tolerant and susceptible black pepper (Piper nigrum L.) in response to water deficit stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought or water deficit stress is one of the main environmental stresses affecting plants, resulting in reduced productivity and crop loss. Black pepper, a major spice cultivated across the globe, is drought sensitive and water stress often results in plant death. The present study compared the difference in physiological parameters: relative water content (RWC) and cell membrane leakage, and also analyzed the differential expression of 11 drought responsive genes in drought tolerant and drought sensitive black pepper genotypes. Tolerant black pepper genotype exhibited significantly higher RWC and lower cell membrane leakage 10 days after stress induction than the sensitive genotype. The relative expressions of the 11 selected drought responsive genes were normalized against ubiquitin and RNA-binding protein which was identified as the most stable reference genes in black pepper under the present experimental condition using the RefFinder software. Dehydrin showed the highest transcript accumulation in both the black pepper genotypes under drought stress condition and the relative expression of the gene was higher in the tolerant genotype compared to the susceptible. Similar pattern of higher relative expression was also observed in the stress responsive gene, osmotin. The membrane protein aquaporin and the transcription factor bZIP were relatively down-regulated in the tolerant genotype. The differential expression of these important drought responsive genes in tolerant genotype of black pepper indicates its further usefulness in developing varieties with improved water stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altinkut A, Kazan K, Ipekci Z, Gozukirmizi N (2001) Tolerance to paraquat is correlated with the traits associated with water stress tolerance in segregating F2 populations of barley and wheat. Euphytica 121:8186

    Article  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150

    Article  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Fátima MG, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Babitha KC, Ramu SV, Nataraja KN et al (2015) EcbZIP60, a basic leucine zipper transcription factor from Eleusine coracana L. improves abiotic stress tolerance in tobacco by activating unfolded protein response pathway. Mol Breed 35:181

    Article  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2001) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  Google Scholar 

  • Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16(7):15811–15851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkars R (2005) Drought and salt tolerance in plants. CRC Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Barthakur S, Babu V, Bansal KC (2001) Over expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant Biochem Biotechnol 10:31–37

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen L, Chen H et al (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193–194:8–17

    Article  PubMed  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Plant Physiol 97:795–803

    Article  CAS  Google Scholar 

  • Colom MR, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and droughtsensitive weeping lovegrass plants. Environ Exp Bot 49:135–144

    Article  CAS  Google Scholar 

  • Fleige S, Pfaffl MW (2006) RNA intergrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  CAS  PubMed  Google Scholar 

  • George JK, Kumar VIP, Anandaraj M (2012) Transcriptomics approaches for gene discovery in plants—a case study in Piper. Agrotechnology 1:2

    Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L). Protoplasma 245:133–141

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamaux I, Steinmertz A, Belhassen E (1997) Looking for molecular and physiological markers of osmotic adjustment in sunflower. New Phytol 137:117–127

    Article  CAS  Google Scholar 

  • Kandiannan K, Krishnamurthy KS, Anke Gowda SJ, Anandaraj M (2014) Climate change and black pepper production. Indian J Arecanut Spices Med Plants 16:31–37

    Google Scholar 

  • Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy KS, Saji KV (2000) Response of piper species to water stress. Indian J Hortic 63:433–438

    Google Scholar 

  • Krishnamurthy KS, Ankegowda SJ, George JK (1998) Impact of water stress on some physiological parameters in black pepper. In: Sadanandan AK, Krishnamurthy KS, Kandiannan K, Korikanthimath VS (eds) Water and nutrient management for sustainable production and quality of spices. Indian Society for Spices, Calicut, pp 153–157

    Google Scholar 

  • Kumar SA, Kumari PH, Kumar GS, Mohanalatha C, Kishor PBK (2015) Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci 6:163

    Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Feng D, Zhang D, Su J, Zhang Y, Li Z, Mu P, Liu B, Wang H, Wang J (2012) Rice MAPK phosphatase IBR5 negatively regulates drought stress tolerance in transgenic Nicotiana tabacum. Plant Sci 10:188–189

    Article  Google Scholar 

  • Li J, Ban L, Wen H, Wang Z, Dzyubenko N, Chapurin V, Gao H, Wang X (2015) An aquaporin protein is associated with drought stress tolerance. Biochem Biophys Res Commun 459:208–213

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Mawlong I, Ali K, Srinivasan R et al (2015) Functional validation of a drought-responsive AP2/ERF family transcription factor-encoding gene from rice in Arabidopsis. Mol Breed 35:163

    Article  Google Scholar 

  • Molaei P, Ebadi A, Namvar A, Khandan Bejandi T (2012) Water relation, solute accumulation and cell membrane injury in sesame (Sesamum indicum L.) cultivars subjected to water stress. Ann Biol Res 3:1833–1838

    CAS  Google Scholar 

  • Omar SA, Elsheery NI, Kalaji HM, Ebrahim MKH, Pietkiewicz S, Lee CH, Allakhverdiev SI, Xu ZF (2013) Identification and differential expression of two dehydrin cDNAs during maturation of Jatropha curcas seeds. Biochemistry (Moscow) 78(5):485–495

    Article  CAS  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2012) Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 12:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G, Campbell LM, Singh NK (2009) Expression of apoplastically secreted tobacco Osmotin in cotton confers drought tolerance. Mol Breed 23:625–639

    Article  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Pillay VS, Sasikumaran S, Ibrahim KK (1988) Effect of rainfall pattern on the yield of black pepper. In: Agrometeorology of plantation crops (Pl. 152–159). Kerala Agricultural University, Trichur

  • Raghothama KG, Liu D, Nelson DE, Hasegawa PM, Bressan RA (1993) Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. Plant Mol Biol 23:1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2011) Ectopic expression of an Osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L). Plant Cell Tiss Organ Cult 105:181–192

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, Shen X, Wang T, Dong J (2012a) Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytol 195:124–135

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012b) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, He M, Zhu Z et al (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Shih DS (2007) Isolation of an osmotin-like protein gene from strawberry and analysis of the response of this gene to abiotic stresses. J Plant Physiol 164:68–77

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50(332):291–302

    Article  CAS  Google Scholar 

  • Zhang N, Si H, Wen G, Du H, Liu B, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5:71

    Article  Google Scholar 

  • Zhu B, Chen TH, Li PH (1995) Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol 108:929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Indian Council of Agricultural Research through Centre for Agricultural Bioinformatics (CABin scheme, operating through ICAR, Indian Agricultural Statistics Research Institute, New Delhi, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Johnson George.

Additional information

Communicated by Y Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, K.J., Malik, N., Vijesh Kumar, I.P. et al. Gene expression analysis in drought tolerant and susceptible black pepper (Piper nigrum L.) in response to water deficit stress. Acta Physiol Plant 39, 104 (2017). https://doi.org/10.1007/s11738-017-2398-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2398-5

Keywords

Navigation