Skip to main content
Log in

Over-expression of Osmotin Induces Proline Accumulation and Confers Tolerance to Osmotic Stress in Transgenic Tobacco

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Osmotin has been implicated in conferring tolerance to drought and salt stress in plants. We have over-expressed the osmotin gene under the control of constitutive CaMV 35S promoter in transgenic tobacco, and studied involvement of the protein in imparting tolerance to salinity and drought stress. The transgenic plants exhibited retarded leaf senescence and improved germination on a medium containing 200mM NaCl. Further, the transgenics maintained higher leaf relative water content (RWC), leaf photosynthesis and free proline content than the wild type plants during water stress and after recovery from stress. When subjected to salt stress (200mM NaCl), the transgenic plants accumulated significantly more proline than the wild type plants. These results suggest the involvement of the osmotin-induced increase in proline in imparting tolerance to salinity and drought stress in transgenic plants over-expressing the osmotin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh NK, Bracker CA, Hasegawa PM, Honda AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE & Bressan RA, Plant Physiol, 85 (1987) 529.

    Article  PubMed  CAS  Google Scholar 

  2. Singh NK, Nelson DE, Kuhn D, Hasegawa PM & Bressan RA, Plant Physiol, 90 (1989) 1096.

    Article  PubMed  CAS  Google Scholar 

  3. LaRosa PC, Chen Z, Nelson DE, Singh NK, Hasegawa PM & Bressan RA, Plant Physiol, 100 (1992) 409.

    Article  PubMed  CAS  Google Scholar 

  4. Kononowlez AK, Nelsen DE, Singh NK, Hasegawa PM & Bressan RA, Plant Cell, 4 (1992) 513.

    Google Scholar 

  5. Kumar V & Spencer ME, Plant Mol Biol, 18 (1992) 621.

    Article  PubMed  CAS  Google Scholar 

  6. Horsch RB, Fry JE, Hoff Mann NL, Eichhollz D, Rogers SE & Fraley FIT, Science, 227 (1985) 1229.

    Article  CAS  Google Scholar 

  7. Dellaporta SL, Wood J & Hicks JB, Plant Mol Biol Rep, 1 (1983) 19.

    Article  CAS  Google Scholar 

  8. Sambrook J, Fritsch EF, Maniatis T, Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, NY (1989).

    Google Scholar 

  9. Bradford MM, Anal Biochem, 72 (1976) 248.

    Article  PubMed  CAS  Google Scholar 

  10. Arnon DI, Plant Physiol, 24 (1994) 1

    Article  Google Scholar 

  11. Bonsai KC & Nagarajan S, Potato Res, 30 (1987) 497.

    Article  Google Scholar 

  12. Bates LS, Waldeen RP & Teare ID, Plant Soil, 39 (1973) 205.

    Article  CAS  Google Scholar 

  13. Murashige T & Skoog F, Physiol Plant, 15 (1962) 473.

    Article  CAS  Google Scholar 

  14. Bonsai KC, Nagarajan S & Gambhir PN, Xth International Congress on Photosynthesis, Montpellier, France, August 1995 (Abstract).

    Google Scholar 

  15. Kavikishor PB, Hong Z, Miao GH, Hu CAA & Verma DPS, Plant Physiol, 108 (1995) 1387.

    Google Scholar 

  16. Zhu B, Su J, Chang M, Verma DPS, Fan YL & Wu R, Plant Sci, 139 (1998) 4.

    Article  Google Scholar 

  17. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wade K, Tsukaya A, Kakubari Y, Yamaguchi-Shinozaki K & Shinozaki K, Plant J, 18 (1999) 185.

    Article  PubMed  CAS  Google Scholar 

  18. LaRosa PC, Honda AK, Hasegawa PM & Bressan RA, Plant Physiol, 79 (1985) 138.

    Article  PubMed  CAS  Google Scholar 

  19. Delauney AJ & Verma DPS, Plant J, 4 (1993) 215.

    Article  CAS  Google Scholar 

  20. Phutela A, Jain V, Dhawan K & Nainawatee HS, J Plant Biochem Biotech, 9 (2000) 35.

    Article  CAS  Google Scholar 

  21. Garcia-Gomez BI, Campos F, Hernandez M & Covarrubias AA, Plant J, 22 (2000) 277

    Article  PubMed  CAS  Google Scholar 

  22. Stines AP, Naylor DJ, Hoj PB & Heeswijack R, Plant Physiol, 120 (1999) 923.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Bansa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthakur, S., Babu, V. & Bansa, K.C. Over-expression of Osmotin Induces Proline Accumulation and Confers Tolerance to Osmotic Stress in Transgenic Tobacco. J. Plant Biochem. Biotechnol. 10, 31–37 (2001). https://doi.org/10.1007/BF03263103

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263103

Key words

Navigation