Skip to main content
Log in

Functional validation of a drought-responsive AP2/ERF family transcription factor-encoding gene from rice in Arabidopsis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A water-deficit stress (WDS)-responsive transcription factor-encoding gene isolated from drought-tolerant Oryza sativa L. cv. N-22 corresponding to the AP2/ERF family and named AP2/ERF-N22, when overexpressed in Arabidopsis under a constitutive promoter, showed improved turgor and less wilting as compared to wild-type plants under WDS. However, the transgenic plants showed phenotypic aberrations such as stunted growth, smaller silique size, reduced number of seeds and delayed flowering. Physio-biochemical analysis of T2 plants revealed higher relative water content, membrane stability index, capacity to scavenge reactive oxygen species and increased levels of proline, carotenoids, wax and abscisic acid content under WDS. Higher abscisic acid content resulted in reduced stomatal conductance and transpiration rate. The reduced chlorophyll content also leads to reduced photosynthetic rate and efficiency. Thus, this gene may be exploited for enhanced drought tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, Gertvan A, Andy P (2004) The SHINE Clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. Plant Cell 16:2463–2480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J BiolSci 15:413–428

    Google Scholar 

  • Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–208

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho MHC (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3:156–165

    Article  Google Scholar 

  • Century KT, Reuber L, Oliver JR (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan Z, Bigelow P, Loescher W, Grumet R (2012) Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. Plant Biotechnol J 10:284–300

    Article  PubMed  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293

    Article  CAS  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Deokar AA, Kondawar V, Kohli D, Aslam M, Jain PK, Karuppayil SM, Varshney RK, Srinivasan R (2014) The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive. Funct Integr Genomics. doi:10.1007/s10142-014-0399-7

  • Ebercon A, Blum A, Jordan WR (1977) A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Sci 17:179–180

    Article  Google Scholar 

  • Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as antioxidants—a review. J Photochem Photobiol B Biol 41:189–200

    Article  CAS  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA (1996) Photosynthetic adjustments to temperature. In: Baker NR (ed) Advances in photosynthesis vol 5: photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, pp 367–385

  • Farquhar GD, Von CS, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Gaber M, Abogadallah R, Nada M, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    Article  Google Scholar 

  • Gargul JM, Mibus H, Serek M (2013) Constitutive overexpression of Nicotiana GA2ox leads to compact phenotypes and delayed flowering in Kalanchoë blossfeldiana and Petunia hybrida. Plant Cell Tissue Organ Cult 115:407–418

    Article  CAS  Google Scholar 

  • Guo P, Li R (2000) Effects of high nocturnal temperature on photosynthetic organization in rice leaves. Acta Bot Sin 42:13–18

    Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:1–7

    Article  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hu Y, Zhao L, Chong K, Wang T (2008) Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. J Plant Physiol 165:1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in Ponderosa pine. Plant Cell Environ 24:113–121

    Article  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cisepoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jagtap V, Bhargava S, Sterb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.). J Exp Bot 49:1715–1721

    CAS  Google Scholar 

  • Jain D, Chattopadhyay D (2013) Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2. PLoS One 8:1–11

  • Jing Z, Jiang H, Wang F, Peng R, Yao Q, Xion A (2013) A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in Transgenic Arabidopsis. Plant Mol Biol Rep 31:1336–1345

    Article  Google Scholar 

  • Kang HG, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee HY, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180:634–641

    Article  CAS  PubMed  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Kurniawan R, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Karaba NN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

  • Krizek BA (2011) Aintegumenta and aintegumenta-Like6 regulate auxin mediated flower development in Arabidopsis. BMC Res Notes 4:176

    Article  PubMed Central  PubMed  Google Scholar 

  • Mawlong I, Ali K, KurupD YadavS, Tyagi A (2014) Isolation and characterization of an AP2/ERF-type drought stress inducible transcription factor encoding gene from rice. J Plant Biochem Biotech 23:42–51

    Article  CAS  Google Scholar 

  • Melgar JC, Guidi L, Remorini D, Agati G, Degli’innocenti E, Castelli S, Baratto MC, Faraloni C, Tattini M (2009) Antioxidant defences and oxidative-damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol 29:1187–1198

    Article  CAS  PubMed  Google Scholar 

  • Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC, Coube CS, Leitão SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Morot-Guadry JF, Job D, Lea PJ (2001) Amino acid metabolism. In: Lea PJ, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 167–211

    Chapter  Google Scholar 

  • Morran S, Omid E, Tatiana P, Boris P, Rohan S, Ainur I, Serik E, Neil S, Peter L, Sergiy L (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murty KS, Majumdar SK (1962) Modification of the technique for determination of chlorophyll stability index in relation to studies of drought resistance in rice. Current Sci 32:470–471

    Google Scholar 

  • Nageswara RRC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using chlorophyll meter. J Agron Crop Sci 189:175–182

    Article  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicky JA, Catherine JL, Peter EU (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Outlaw WHJ (2003) Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 2:503–529

    Article  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinhero RG, Rao MV, Palyath G, Murr DP, Fletcher RA (2001) Changes in the activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114:695–704

    Google Scholar 

  • Premchandra GS, Saneoka H, Ogata S (1990) Cell membrane stability an indicator of drought tolerance as affected by applied nitrogen in soybean. J Agric Sci Camb 115:63–66

    Article  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays. Plant J 50: 54–69

  • Rogers SO, Bendich AJ (1994) Extraction of DNA from plant, fungal and algal tissues. In: Gelvin SB, Schilperoort RA (eds) Plant Mol Biol Manual 1:1–8

  • Romero C, Jose MB, Jose L, Vaya SR, Francisco AC (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    Article  CAS  PubMed  Google Scholar 

  • Sakuma YLQ, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K(2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Saneoka H, Ogata S (1987) Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions. Soil Sci Plant Nutr 33:439–448

    Article  CAS  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Soares VL, Rodrigues SM, Oliveira TM, Queiroz TO, Lima LS, Hora-Júnior BT (2011) Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis. Mol Biol Rep 38:1329

    Article  CAS  PubMed  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Tian L, Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  CAS  PubMed  Google Scholar 

  • Yibing H, Lifeng Z, Kang C, Tai W (2008) Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. J Plant Physiol 165:1717–1725

    Article  Google Scholar 

  • Yin XR, Allan AC, Chen KS, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu L, Xi C, Zhen W, Shimei W, Yuping W, Qisheng Z, Shigui L, Chengbin X (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yusuke I, Koji K, Kyonoshin M, Teruaki T, Masatomo K, Motoaki S, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Google Scholar 

  • Zeevaart JAD (1999) Abscisic acid metabolism and its regulation. In: Hooykaas PJJ, Hall MAK, Libbenga R (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science, Amsterdam, pp 189–207

    Chapter  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Lin NQ, Chua N (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZJ, Li F, Li DJ, Zhang HW, Huang RF (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 32:765–774

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from SERB (DST). National Phytotron Facility and NRCPB, New Delhi, for the facilities required to carry out the various experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mawlong, I., Ali, K., Srinivasan, R. et al. Functional validation of a drought-responsive AP2/ERF family transcription factor-encoding gene from rice in Arabidopsis . Mol Breeding 35, 163 (2015). https://doi.org/10.1007/s11032-015-0290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0290-9

Keywords

Navigation