Skip to main content
Log in

Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cold shock proteins (CSPs) are a kind of evolutionarily conserved nucleic acid-binding protein widely distributed from prokaryotes to eukaryotes. In this study, BcCSP1, a novel CSP, was isolated from a Pak-choi stress-induced cDNA library by the rapid amplification of cDNA end method. This gene had an open-reading frame (ORF) of 822 base pairs encoding 273 amino acids. BcCSP1 contained an N-terminal CSD domain and a glycine-rich region interspersed with seven CCHC-type zinc fingers at its C terminus. Multi-alignment and phylogenetic analyses showed that BcCSP1 shared high similarity to AtCSP1 and AtCSP3. Real-time polymerase chain reaction analysis showed that BcCSP1 was induced and co-expressed under cold stress and abscisic acid treatments. In addition, a BcCSP1-YFP fusion protein was localized to the nucleus and cytoplasm. These results indicated that BcCSP1 plays an important role in responses to cold and ABA treatments in Pak-choi. This work may be useful for future functional analysis of other CSP genes in Pak-choi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Fusaro AF, Bocca SN, Ramos RLB, Barrôco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inzé D (2007) AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225:1339–1351

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Noutoshi Y, Narusaka Y, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu Rev Plant Physiol 33:347–372

    Article  CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300

    Article  CAS  PubMed  Google Scholar 

  • Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290

    Article  CAS  PubMed  Google Scholar 

  • Juntawong P, Sorenson R, Bailey-Serres J (2013) Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. Plant J 74:1016–1028

    Article  CAS  PubMed  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung C-H, Kang H (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nuleic Acids Res 35:506–516

    Article  CAS  Google Scholar 

  • Kim M-H, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim M-H, Sato S, Sasaki K, Saburi W, Matsui H, Imai R (2013) COLD SHOCK DOMAIN PROTEIN 3 is involved in salt and drought stress tolerance in Arabidopsis. FEBS Open Bio 3:438–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R (2005) Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Lett 579:4887–4891

    Article  CAS  PubMed  Google Scholar 

  • Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA 103:10122–10127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 50:869–878

    Article  CAS  PubMed  Google Scholar 

  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Blasi U, Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4:118

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Imai R (2011) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki K, Kim M-H, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Bioph Res Commun 364:633–638

    Article  CAS  Google Scholar 

  • Sasaki K, Kim MH, Imai R (2013) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. New Phytol 198:95–102

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang J, Wang F, Wang Z, Huang Z, Xiong A, Hou X (2013) Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). BMC Plant Biol 13:188

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Karlson DT (2011) Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis. J Exp Bot 62:2079–2091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Karlson D (2012) Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion. J Exp Bot 63:4861–4873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (31272173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by W. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Tang, J. & Hou, X. Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation. Acta Physiol Plant 38, 47 (2016). https://doi.org/10.1007/s11738-015-2058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2058-6

Keywords

Navigation