Skip to main content
Log in

AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The glycine-rich protein AtGRP2 is one of the four members of the cold-shock domain (CSD) protein family in Arabidopsis. It is characterized by the presence of a nucleic acid-binding CSD domain, two glycine-rich domains and two CCHC zinc-fingers present in nucleic acid-binding proteins. In an attempt to further understand the role of CSD/GRP proteins in plants, we have proceeded to the functional characterization of the AtGRP2 gene. Here, we demonstrate that AtGRP2 is a nucleo-cytoplasmic protein involved in Arabidopsis development with a possible function in cold-response. Expression analysis revealed that the AtGRP2 gene is active in meristematic tissues, being modulated during flower development. Down-regulation of AtGRP2 gene, using gene-silencing techniques resulted in early flowering, altered stamen number and affected seed development. A possible role of AtGRP2 as an RNA chaperone is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Abbreviations

CDS:

Cold-shock domain

CSP:

Cold-shock protein

CCHC:

Knuckle zinc finger

GRP:

Glycine-rich protein

GUS:

β-glucuronidase

MBP:

Maltose-binding protein

RRM:

RNA recognition motif

References

  • Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto-Martins G (2005) Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Gen Mol Biol 23:608–624

    Google Scholar 

  • Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3:749–758

    Article  PubMed  CAS  Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 269:23074–23078

    Google Scholar 

  • Carpenter CD, Kreps JA, Simon AE (1994) Genes enconding gycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 104:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Kato N, Wang W, Li J, Chen X (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53–66

    Article  PubMed  CAS  Google Scholar 

  • Clarke MC, Wei W, Lindsey K (1992) High-frequency transformation of Arabidopsis thaliana by Agrobacterium tumefaciens. Plant Mol Biol Rep 10:178–189

    Google Scholar 

  • de Almeida Engler J, De Groodt R, Van Montagu M, Engler G (2001) In situ hybridization to mRNA of Arabidopsis tissue sections. Methods 23:325–334

    Article  PubMed  Google Scholar 

  • de Oliveira DE, Seurinck J, Inzé D, Van Montagu M, Botterman J (1990) Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427–436

    Article  PubMed  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  PubMed  CAS  Google Scholar 

  • Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N (2001) The major mRNA-associated protein YB-1 is a potent 5’ cap-dependent mRNA stabilizer. EMBO J 20:5491–5502

    Article  PubMed  CAS  Google Scholar 

  • Fusaro A, Mangeon A, Rocha C, Junqueira R, Coutinho T, Margis R, Sachetto-Martins G (2001) Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs) encoding glycine-rich proteins (GRPs). Gen Mol Biol 24:263–273

    CAS  Google Scholar 

  • Gendra E, Moreno A, Albà MM, Pagès M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886

    Article  PubMed  CAS  Google Scholar 

  • Graumann P, Marahiel M (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290

    Article  PubMed  CAS  Google Scholar 

  • Hanano S, Sugita M, Sugiura M (1996) Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Plant Mol Biol 31:57–68

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994) A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J 5:799–813

    Article  PubMed  CAS  Google Scholar 

  • Heintzen C, Nater M, Apel K, Staiger D (1997) AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:8515–8520

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Sugita M, Sugiura M (1993) cDNA structure, expression and nucleic-acid binding properties of three RNA-binding proteins in tobacco: ocurrence of tissue alternative splicing. Nucleic Acids Res 21:3981–3987

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from B. napus. Plant Mol Biol 30:679–684

    Article  PubMed  CAS  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12–15

    Article  PubMed  CAS  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold-shock proteins. J Biol Chem 20:35248–35256

    Article  Google Scholar 

  • Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900

    Article  PubMed  CAS  Google Scholar 

  • Kingsley PD, Palis J (1994) GRP-2 proteins contain both CCHC zinc-fingers and a cold shock domain. Plant Cell 6:1522–1523

    Article  PubMed  CAS  Google Scholar 

  • Kwak KJ, Kim YO, Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56:3007–3016

    Article  PubMed  CAS  Google Scholar 

  • Li J, Jia D, Chen X (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13:2269–2281

    Article  PubMed  CAS  Google Scholar 

  • Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731–740

    Article  PubMed  CAS  Google Scholar 

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    Article  PubMed  CAS  Google Scholar 

  • Magioli C, Barrôco RMP, Benicio CA, de Santiago-Fernandes LD, Mansur E, Engler G, Margis-Pinheiro M, Sachetto-Martins G (2001) Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Sci 161:573–581

    Article  Google Scholar 

  • Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin C (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci USA 101:12759–12764

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi K, Sugita M, Sugiura M (1997) Structure and subcellular localization of a small RNA-binding protein from tobacco. Plant J 12:215–221

    Article  PubMed  CAS  Google Scholar 

  • Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88:637–646

    Article  PubMed  CAS  Google Scholar 

  • Moss EG, Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258:432–442

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  CAS  Google Scholar 

  • Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA 103:10122–10127

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J (1997) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899–908

    Article  PubMed  CAS  Google Scholar 

  • Ossareh-Nazari B, Gwizdek C, Dargemont C (2001) Protein export from the nucleus. Traffic 2:684–689

    Article  PubMed  CAS  Google Scholar 

  • Sachetto-Martins G, Fernandes LD, Félix DB, de Oliveira DE (1995) Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm derived cells. Int J Plant Sci 156:460–470

    Article  CAS  Google Scholar 

  • Sachetto-Martins G, Franco L, de Oliveira D (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Bioch Biophys Acta 1492:1–14

    CAS  Google Scholar 

  • Sato N (1994) A cold-regulated cyanobacterial gene cluster encodes a RNA-binding protein and ribosomal protein S21. Plant Mol Biol 24:819–823

    Article  PubMed  CAS  Google Scholar 

  • Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Quesada V, Henderson IR, Dijkwel PP, Macknight R, Dean C (2004) RNA processing and Arabidopsis flowering time control. Bioch Soc Trans 32:565–566

    Article  CAS  Google Scholar 

  • Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD (2000) Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148:427–440

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MF, Shyu AB (2001) Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 23:775–787

    Article  PubMed  CAS  Google Scholar 

  • Zchut S, Weiss M, Pick U (2003) Temperature-regulated expression of a glycine-rich RNA-binding protein in the halotolerant alga Dunaliella salina. J Plant Physiol 160:1375–1384

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. E. de Oliveira (Institute of Plant Biotechnology for Developing Countries, Gent, Belgium) for critical reading of the manuscript. A.F.F. was supported by a Ph.D. fellowship from CAPES. S.N.B. and C.M. were supported by CNPq post-doctoral and CAPES-ProDoc fellowships, respectively. V.C.J., T.C.C. and C.M.R.L. were recipient of PIBIC fellowship from CNPq. This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to G.S.M. and by Interuniversity Poles of Attraction Programme-Belgian Science Policy (P5/13) to D.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Sachetto-Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fusaro, A.F., Bocca, S.N., Ramos, R.L.B. et al. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225, 1339–1351 (2007). https://doi.org/10.1007/s00425-006-0444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0444-4

Keywords

Navigation