Skip to main content
Log in

Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cadmium (Cd) pollution and phosphate (Pi) deficiency are two important problems in some Asian countries, but the researches on effects and mechanisms of Pi deficiency on Cd uptake in rice are limited. Herein, 3-week-old rice seedlings were treated with 3 Pi levels (−Pi, +Pi, and +2Pi) under Cd stress for 3 weeks. The results showed that in the hydroponics experiments, Pi deprivation (−Pi) treatment significantly decreased Cd accumulation in rice seedlings but aggravated Cd phytotoxicity symptoms with decreased tillers, root length, shoot height, and dry weight. In contrast, Pi addition (+2Pi) treatment increased Cd accumulation but alleviated Cd phytotoxicity symptoms in rice seedlings. These results indicate that Pi physiologically regulates Cd accumulation and sensitivity in rice. Furthermore, -Pi treatment not only significantly decreased carbon (C) assimilation by reducing net photosynthesis rate and transpiration rate but also decreased glutathione (GSH) and phytochelatins (PCs) contents in rice seedlings. In addition, -Pi treatment significantly increased iron (Fe, a well-known competitive metal of Cd) accumulation in rice plantlets. Based on these results, we suggest that Pi deprivation decreases rice Cd uptake by competitively increasing Fe uptake and accumulation, Pi deprivation also enhances the sensitivity to Cd in rice plants by inhibiting biomass accumulation and reducing PCs synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel S (2011) Phosphate sensing in root development. Curr Opin Plant Biol 14:303–309

    Article  CAS  PubMed  Google Scholar 

  • Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Inter J Biochem Cell B 33:940–959

    Article  CAS  Google Scholar 

  • Alloway BJ, Steinnes E (1999) Anthropogenic additions of cadmium to soils. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 97–123

    Chapter  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Method Enzymol 113:548–555

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 54:271–279

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2004) Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J Plant Physiol 161:795–802

    Article  CAS  PubMed  Google Scholar 

  • Astolfi S, Zuchi S, Neumann G, Cesco S, di Toppi LS, Pinton R (2012) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 63:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Astolfi S, Ortolani MR, Catarcione G, Paolacci AR, Cesco S, Pinton R, Ciaffi M (2014) Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiol Plant 152:646–659

    Article  CAS  PubMed  Google Scholar 

  • Bao T, Sun TH, Sun LN (2012) Effect of cadmium on physiological responses of wheat and corn to iron deficiency. J Plant Nutr 35:1937–1948

    Article  CAS  Google Scholar 

  • Brown S, Chaney R, Hallfrisch J, Ryan JA, Berti WR (2004) In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. J Environ Qual 33:522–531

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Zouari M, Gogorcena Y, Lucena JJ, Abadía J (2003) Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiol Biochem 41:999–1005

    Article  CAS  Google Scholar 

  • Chien SH, Prochnow LI, Tu S, Snyder CS (2011) Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosyst 89:229–255

    Article  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trend Plant Sci 18:92–99

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity-a review. Plant Soil Environ 53:193–200

    CAS  Google Scholar 

  • Du J, Yan C, Li Z (2014) Phosphorus and cadmium interactions in Kandelia obovata (SL) in relation to cadmium tolerance. Environ Sci Pollut Res 21:355–365

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryll groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fan JL, Hu ZY, Ziadi N, Xia X, Wu CYH (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut 158:409–415

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Gao X, Flaten DN, Tenuta M, Grimmett MG, Gawalko EJ, Grant CA (2011) Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization. Plant Soil 338:423–434

    Article  CAS  Google Scholar 

  • Godbold DL, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ Pollut 38:375–381

    Article  CAS  Google Scholar 

  • Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Agric Agri Food Canada 54:143–155

    CAS  Google Scholar 

  • Grant CA, Dribnenki JCP, Bailey LD (1999) A comparison of the yield response of solin (cv. Linola 947) and flax (cvs. McGregor and Vimy) to application of nitrogen, phosphorus, and Provide (Penicillium bilaji). Can J Plant Sci 79:527–533

    Article  Google Scholar 

  • Greipsson S (1995) Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. J Plant Nutr 18:1659–1665

    Article  CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhang YH (2007) Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Coll Surf B: Biointerfaces 57:182–188

    Article  CAS  Google Scholar 

  • Hassan MJ, Zhang G, Wu F, Wei K, Chen Z (2005) Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 168:255–261

    Article  CAS  Google Scholar 

  • Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC (2006) Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88:1767–1771

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Li JH, Zhu YG, Huang YZ, Hu HQ, Christie P (2005) Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. Environ Geochem Heal 27:169–176

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kudo K, Kudo H, Kawai S (2007) Cadmium uptake in barley affected by iron concentration of the medium: role of phytosiderophores. Soil Sci Plant Nutr 53:259–266

    Article  CAS  Google Scholar 

  • Liang Y, Zhu YG, Xia Y, Li Z, Ma Y (2006) Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Ann Appl Biol 149:305–312

    Article  CAS  Google Scholar 

  • Liu HJ, Zhang JL, Zhang FS (2007) Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environ Exp Bot 59:314–320

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ 394:361–368

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cao C, Wong M, Zhang Z, Chai Y (2010) Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. J Environ Sci 22:1067–1072

    Article  CAS  Google Scholar 

  • Maejima E, Watanabe T, Osaki M, Wagatsuma T (2014) Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls. J Plant Physiol 171:9–15

    Article  CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell Environ 35:524–533

    Article  CAS  Google Scholar 

  • Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, von Wirén N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. P Natl Acad Sci USA 102:11934–11939

    Article  CAS  Google Scholar 

  • Molina AS, Nievas C, Chaca MVP, Garibotto F, González U, Marsá SM, Luna C, Giménez MS, Zirulnik F (2008) Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L. Plant Growth Regul 56:285–295

    Article  CAS  Google Scholar 

  • Moreno JL, Hernandez T, Garcia C (1999) Effects of a cadmium-containing sewage sludge compost on dynamics of organic matter and microbial activity in an arid soils. Biol Fert Soils 28:230–237

    Article  CAS  Google Scholar 

  • Mulla DJ, Page AL, Ganje TJ (1980) Cadmium accumulations and bioavailability in soils from long-term phosphorus fertilization. J Environ Qual 9:408–412

    Article  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    Article  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panigrahy M, Rao DN, Sarla N (2009) Molecular mechanisms in response to phosphate starvation in rice. Biotech Adv 27:389–397

    Article  CAS  Google Scholar 

  • Qiu Q, Wang Y, Yang Z, Yuan J (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Tox 49:2260–2267

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Ann Rev. Plant Biol 50:665–693

    CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sajwan KS, Paramasivam S, Richardson JP, Alva AK (2002) Phosphorus alleviation of cadmium phytotoxicity. J Plant Nutr 25:2027–2034

    Article  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheerer U, Haensch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C (2010) Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR. J Exp Bot 61:609–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Gen 109:1361–1368

    Article  CAS  Google Scholar 

  • Smith FW (2001) Sulphur and phosphorus transport systems in plants. Plant Soil 232:109–118

    Article  CAS  Google Scholar 

  • Solti Á, Gáspár L, Vági P, Záray G, Fodor F, Sárvári É (2011) Cd, Fe, and light sensitivity: interrelationships in Cd-treated Populus. OMICS 15:811–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Biol 41:553–575

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011) Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6:1813–1816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:1–8

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Von Vexhall HR, Mutert E (1995) Global extent, development, and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wissuwa M (2005) Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil 269:57–68

    Article  CAS  Google Scholar 

  • Xiong J, Zhang L, Fu G, Yang Y, Zhu C, Tao L (2012) Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J Plant Res 125:155–164

    Article  CAS  PubMed  Google Scholar 

  • Yamagata N, Shigematsu I (1970) Cadmium pollution in perspective. Bull Inst Publ Hlth Tokyo 19:1–27

    CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock J (1976) Laboratory manual for physiological studies of rice, 3rd edn. The International Rice Research Institute, Manila

    Google Scholar 

  • Zhang X, Zhang F, Mao D (1999) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): phosphorus uptake. Plant Soil 209:187–192

    Article  CAS  Google Scholar 

  • Zhao ZQ, Zhu YG, Cai YL (2005) Transport and transformation of cadmium in soil-plant systems and the influence factors. Ecol Environ 14:282–286

    Google Scholar 

  • Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 236:989–997

    Article  CAS  PubMed  Google Scholar 

  • Zwonitzer JC, Pierzynski GM, Hettiarachchi GM (2003) Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal-contaminated soil. Water Air Soil Pollut 143:193–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation (No: 31201150), Zhejiang Provincial Nature Science Foundation (No: Y15C130007), Special Foundation for Scientific Research in National Research Institutes (No: 2012RG004-3), National commonweal agricultural project (No: 201203029), National Rice production system project (No: CARS-01-27), Science Foundation of Zhejiang Sci-Tech University, Foundation of Zhejiang Provincial Top Key Discipline of Biology and Foundation of Zhejiang Provincial Key Discipline of Botany, Foundation of Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xiong or Longxing Tao.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, R., Fu, G. et al. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiol Plant 38, 28 (2016). https://doi.org/10.1007/s11738-015-2055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2055-9

Keywords

Navigation