Abebe T, Malmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: gene expression in the lemma, palea, awn and seed. Funct Integr Genomics 10:191–205
PubMed
Article
CAS
Google Scholar
Alcazár R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio A (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876
PubMed
Article
Google Scholar
An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis
ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121
PubMed
Article
CAS
Google Scholar
Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250
PubMed
Article
CAS
Google Scholar
Atienza SG, Faccioli P, Perrotta G, Dalfino G, Zschiesche W, Humbeck K, Stanca AM, Cattivelli L (2004) Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Sci 167:1359–1365
Article
CAS
Google Scholar
Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an intergrated view from breeding to genomics. Field Crop Res 105:1–14
Article
Google Scholar
Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agri 43:1–25
Article
Google Scholar
Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119
PubMed
CAS
Google Scholar
Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics 6:202–211
PubMed
Article
CAS
Google Scholar
Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V (2007) A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 63:679–688
PubMed
Article
CAS
Google Scholar
Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies. J Exp Bot 55:1445–1454
PubMed
Article
CAS
Google Scholar
Gilsbach R, Kouta M, Bönisch H, Brüss M (2006) Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. Biotechniques 40:173–177
PubMed
Article
CAS
Google Scholar
Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biot J 5:192–206
Article
CAS
Google Scholar
Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493
PubMed
Article
CAS
Google Scholar
Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544
PubMed
Article
CAS
Google Scholar
Hellemans J, Mortier G, Paepe AD, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time PCR data. Gen Biol 8:R19
Article
Google Scholar
Huggett I, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6:279–284
PubMed
Article
CAS
Google Scholar
Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59
PubMed
Article
Google Scholar
Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60:3595–3609
PubMed
Article
CAS
Google Scholar
Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6:238–246
PubMed
Article
CAS
Google Scholar
Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinf 6:62–77
Article
Google Scholar
Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306
PubMed
Article
CAS
Google Scholar
Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 10:4
PubMed
Article
Google Scholar
Marty I, Meyer Y (1992) cDNA nucleotide sequence and expression of tobacco cytoplasmic ribosomal protein L2 gene. Nucl Acids Res 7:1517–1522
Article
Google Scholar
Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914
PubMed
Article
CAS
Google Scholar
Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11
PubMed
Article
Google Scholar
Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A-Z of quantitative PCR. International University Line (IUL), La Jolla, pp 87–112
Google Scholar
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determinant of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotech Let 26:509–515
Article
CAS
Google Scholar
Radchuk V, Sreenivasulu N, Blume Y, Weschke W (2008) Cloning and expression of the tubulin genes in barley. Cell Biol Int 32:557–559
PubMed
Article
CAS
Google Scholar
Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Bioch Biophys Res Com 313:856–862
Article
Google Scholar
Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt and feed- type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19
Article
CAS
Google Scholar
Rasoulnia A, Bihamta MR, Peyghambari SA, Alizadeh H, Rahnama A (2010) Proteomic response of barley leaves to salinity. Mol Biol Rep. doi:10.1007/s1103301006518
Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241
PubMed
Article
CAS
Google Scholar
Singh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365–386
PubMed
Article
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 RESEARCH0034
Vandesompele J, Kubista M, Pfaffl MW (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-time PCR: current technology and applications. Caister Academic Press, London, pp 47–64
Google Scholar
Vinocur B, Altman A (2005) Recent advantages in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132
PubMed
Article
CAS
Google Scholar
Wan H, Zhao Z, Qian Ch, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261
PubMed
Article
CAS
Google Scholar
Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252
PubMed
Article
CAS
Google Scholar
Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytol 116:341–381
Article
CAS
Google Scholar
Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112:152–166
PubMed
Article
CAS
Google Scholar