Skip to main content
Log in

Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. on bioassay plants

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A bioassay-guided fractionation of the allelochemicals of the ethyl acetate fraction extracted from Aglaia odorata led to isolation of a bisamide, odorine. The growth inhibitory effects of odorine and ethyl acetate fraction were studied for comparison on Echinochloa crus-galli. Odorine and ethyl acetate fraction of A. odorata could inhibit the germination and seedling growth of E. crus-galli, with ethyl acetate fraction being more potent. Thus, ethyl acetate fraction was selected for further experiment, E. crus-galli seeds were studied the effects of the ethyl acetate fraction from A. odorata leaves in wettable powder formulation on imbibition and α-amylase activity. It was found that treated seeds showed lower imbibition and α-amylase activity. The results of cytogenetic bioassay in Allium cepa roots showed that ethyl acetate fraction inhibited cell mitosis and induced mitotic abnormalities resulting from its action on chromatin organization and mitotic spindle in the exposed roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ateeq B, Farah MA, Ali MN, Ahmad W (2002) Clastogenicity of pentachlorophenol, 2,4-d and butachlor evaluated by Allium root tip test. Mutat Res 514:105–113

    PubMed  CAS  Google Scholar 

  • Batish DR, Gupta P, Singh P, Kohli RK (2006) l-DOPA (l-3,4-dihydroxyphenylalanine) affects rooting potential and associated biochemical changes in hypocotyl of mung bean, and inhibits mitotic activity in onion root tips. Plant Growth Regul 49:229–235

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases α and β. In: Colowick SP, Kaplan NO (eds) Method in enzymology. Academic Press, New York, pp 149–158

    Chapter  Google Scholar 

  • Borboa L, De la Torre C (1996) The genotoxicity of Zn(II) and Cd(II) in Allium cepa root meristematic cells. New Phytol 134:481–486

    Article  CAS  Google Scholar 

  • Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides, lignans, triterpene, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J Nat Prod 61:1482–1490

    Article  PubMed  CAS  Google Scholar 

  • Charoenying P, Teerarak M, Laosinwattana C (2010) An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Sci Hortic 125:411–416

    Article  CAS  Google Scholar 

  • Decordier I, Cundari E, Kirsch-Volders M (2008) Mitotic checkpoints and the maintenance of the chromosome karyotype. Mutat Res 651:3–13

    PubMed  CAS  Google Scholar 

  • Detterbeck R, Hesse M (2002) Synthesis and structure elucidation of open-chained putrescine-bisamides from Aglaia species. Tetrahedron 58:6887–6893

    Article  CAS  Google Scholar 

  • Duh CY, Wang SK, Hou RS, Wu YC, Wang Y, Cheng MC, Chang TT (1993) Dehydroodorine, a cytotoxic diamide from the leaves of Aglaia formosana. Phytochemistry 34:857–858

    Article  CAS  Google Scholar 

  • Dyer WE, Weller SC (2005) Plant response to herbicides. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell Pubishing, UK, pp 171–214

    Chapter  Google Scholar 

  • El-Ghamery AA, El-Kholy MA, Abou El-Yousser MA (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res 537:29–41

    PubMed  CAS  Google Scholar 

  • Espen L, Pirovano L, Cocucci SM (1997) Effects of Ni2+ during the early phases of radish (Raphanus sativa) seed germination. Environ Exp Bot 38:87–197

    Article  Google Scholar 

  • FiskesjÖ G (1993) The Allium cepa test in waste water monitoring. Environ Toxicol Water Qual 8:291–298

    Article  Google Scholar 

  • FiskesjÖ G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC, Lewis Publishers, New York, pp 307–333

    Chapter  Google Scholar 

  • Han CM, Pan KW, Wu N, Wang JC, Li W (2008) Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Sci Hortic 116:330–336

    Article  Google Scholar 

  • Havey MJ (2002) Genome organization in Allium. In: Rabinowitch HD, Currah L (eds) Allium crop science. Recent advances. CABI Publishing, UK, pp 59–79

    Chapter  Google Scholar 

  • Joshi MN, Chowdhury BL, Vishnoi SP, Shoeb A, Kapil RS (1987) Antiviral activity of (+)-odorinol. Planta Med 53:254–255

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Macías FA (2005) Effects of 6-methoxy-2-benzoxazolinone on the germination and a-amylase activity in lettuce seeds. J Plant Physiol 162:1304–1307

    Article  PubMed  CAS  Google Scholar 

  • Kilani S, Sghaier MB, Limem I, Bouhlel I, Boubaker J, Bhouri W, Skandrani I, Neffatti A, Ammar RB, Dijoux-Franca MG, Ghedtra K, Chekir-Ghedira L (2008) In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus. Bioresour Technol 99:9004–9008

    Article  PubMed  CAS  Google Scholar 

  • Laosinwattana C, Poonpaiboonpipat T, Teerarak M, Phuwiwat W, Mongkolaussavaratana M, Charoenying P (2009) Allelopathic potential of Chinese rice flower (Aglaia odorata Lour.) as organic herbicide. Allelopathy J 24:45–54

    Google Scholar 

  • Laosinwattana C, Boonleom C, Teerarak M, Thitavasanta S, Charoenying P (2010) Potential allelopathic effects of Suregada multiflorum and the influence of soil type on its residue’s efficacy. Weed Biol Manag 10:153–159

    Article  Google Scholar 

  • Marcano L, Carruyo I, Del Campo A, Montiel X (2004) Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environ Res 94:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rivero-Cruz JF, Chai HB, Kardomo LBS, Setyowat FM, Afriastini S, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Cytotoxic constituents from the twigs of Aglaia rubiginosa. J Nat Prod 67:343–347

    Article  PubMed  CAS  Google Scholar 

  • Roux D, Martin MT, Sevenet AT, Hadi AHA, Pais M (1998) Foveolins A and B, dammarane triterpenes from Aglaia foveolata. Phytochemistry 49:1745–1748

    Article  PubMed  CAS  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New Age International (P) Ltd., New Delhi

  • Saifah E, Suttisri R, Shamsub S, Pengsuparp T, Lipipun V (1999) Bisamides from Aglaia edulis. Phytochemistry 52:1085–1088

    Article  PubMed  CAS  Google Scholar 

  • Seal AN, Pratley JE, Haig TJ, An M, Wu H (2010) Plants with phytotoxic potential: wollemi pine (Wollemia nobilis). Agric Ecosyst Environ 135:52–57

    Article  CAS  Google Scholar 

  • Shiengthong D, Ungphakorn A, Lewis DE, Massy-Westropp RA (1979) Constituents of Thai medicinal plants-IV new nitrogenous compounds odorine and odorinol. Tetrahedron Lett 24:2247–2250

    Article  Google Scholar 

  • Singh RJ (2002) Plant cytogenetics. CRC Press, London

    Book  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Setia N, Kohli RK (2005) Effects of 2-benzoxazolinone on the germination, early growth and morphogenetic response of mung bean (Phaseolus aureus). Ann Appl Biol 267–274

  • Soltys D, Rudzińska-Langwald A, Kurek W, Gniazdowska A, Sliwinska E, Bogatek R (2011) Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta 234:609–621

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Teerarak M, Laosinwattana C, Charoenying P (2010) Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresour Technol 101:5677–5684

    Article  PubMed  CAS  Google Scholar 

  • Turk MA, Tawaha AM (2003) Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot 22:673–677

    Article  Google Scholar 

  • Wang BG, Ebel R, Nugroho BW, Prijono D, Frank W, Steube KG, Hao XJ, Proksch P (2001) Aglacins A-D, first representative of a new class of aryltetralin cyclic ether lignans from Aglaia cordata. J Nat Prod 64:1521–1527

    Article  PubMed  CAS  Google Scholar 

  • Zonno MA, Vurro M, Lucretti S, Andolfi A, Perrone C, Evidente A (2008) Phyllostictine A, a potential natural herbicide produced by Phyllosticta cirsii: in vitro production and toxicity. Plant Sci 175:818–825

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge The Sanga Subhasri Research Foundation and The Research Foundation of King Mongkut’s Institute of Technology Ladkrabang for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patchanee Charoenying.

Additional information

Communicated by S. Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teerarak, M., Charoenying, P. & Laosinwattana, C. Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. on bioassay plants. Acta Physiol Plant 34, 1277–1285 (2012). https://doi.org/10.1007/s11738-011-0923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0923-5

Keywords

Navigation