Skip to main content
Log in

Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Many studies have shown that root–shoot imbalance influences vegetative growth and development of cotton (Gossypium hirsutum L.), but few have examined changes in leaf senescence and endogenous hormones due to stem girdling. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly cytokinins and abscisic acid (ABA), and leaf senescence following stem girdling. Field-grown cotton plants were girdled on the main stem 5 days after squaring (DAS), while the non-girdled plants served as control. Plant biomass, seed cotton yield, main-stem leaf photosynthetic (Pn) rate, chlorophyll (Chl) and malondialdehyde (MDA) concentrations, as well as levels of cytokinins and ABA in main-stem leaves and xylem sap were determined after girdling or at harvest. Main-stem girdling decreased the dry root weight and root/shoot ratio from 5 to 70 days after girdling (DAG) and reduced seed cotton yield at harvest. Main-stem leaf Pn and Chl concentration in girdled plants were significantly lower than in control plants. Much higher levels of MDA were observed in main-stem leaves from 5 to 70 DAG, suggesting that stem girdling accelerated leaf senescence. Girdled plants contained less trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA), but more ABA than control plants in both main-stem leaves and xylem sap. These results suggested that main-stem girdling accelerated leaf senescence due to reduced levels of cytokinin and/or increased ABA. Cytokinin and ABA are involved in leaf senescence following main-stem girdling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Chl:

Chlorophyll

Pn:

Photosynthetic rate

DHZ + DHZR:

Dihydrozeatin and its riboside

iP + iPA:

Isopentenyladenine and its riboside

t-Z + t-ZR:

Trans-zeatin and its riboside

MDA:

Malondialdehyde

DAG:

Days after girdling

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

DAS:

Days after squaring

PBS:

Phosphate-buffered saline

PGRs:

Plant growth regulators

References

  • Agusti M, Andreu I, Juan M, Almela V, Zacarias L (1998) Effect of ringing branches on fruit size and maturity of peach and nectarine cultivars. J Hortic Sci Biotechnol 73:537–540

    Google Scholar 

  • Badenoch-Jones J, Parker CW, Letham DS, Singh S (1996) Effect of cytokinins supplied via the xylem at multiples of endogenous concentrations on transpiration and senescence in derooted seedlings of oat and wheat. Plant Cell Environ 19:504–516

    Article  CAS  Google Scholar 

  • Berüter J, Feusi MES (1997) The effect of girdling on carbohydrate partitioning in the growing apple fruit. J Plant Physiol 151:277–285

    Google Scholar 

  • Bleecker AB, Patterson SE (1997) Last exit: senescence abscission and meristem arrest in Arabidopsis. Plant Cell 9:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid and abiotic stress. Plant Physiol 132:1228–1240

    Article  PubMed  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence: a genomics approach. Plant Biotechnol J 1:3–22

    Article  PubMed  CAS  Google Scholar 

  • Catterou M, Dubois F, Smets R, Vaniet S, Kichey T, Van Onckelen H, Sangwan-Norreel BS, Sangwan RS (2002) hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J 30:273–287

    Article  PubMed  CAS  Google Scholar 

  • Chandlee JM (2001) Current molecular understanding of the genetically programmed process of leaf senescence. Physiol Plantarum 113:1–8

    Article  CAS  Google Scholar 

  • Cohen A (1981) Recent developments in girdling citrus trees. Proc Int Soc Citric 1:196–199

    Google Scholar 

  • Cowan AK, Freeman M, Bjǒrkman PO, Nicander B, Sitbon F, Tillberg E (2005) Effects of senescence-induced alteration in cytokinin metabolism on source–sink relationships and ontogenic and stress-induced transitions in tobacco. Planta 221:801–814

    Article  PubMed  CAS  Google Scholar 

  • Dong HZ, Li WJ, Tang W, Zhang DM, Li ZH (2006) Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Res 98:106–115

    Article  Google Scholar 

  • Dong HZ, Niu YH, Li WJ, Zhang DM (2008) Effects of cotton root stock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot 59:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Dong HZ, Niu YH, Kong XQ, Luo Z (2009) Effect of early-fruit removal on endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. J Plant Growth Regul 59:93–101

    Article  CAS  Google Scholar 

  • Estruch JJ, Pereto JG, Vercher Y, Beltran JP (1989) Sucrose loading in isolated veins of Pisum sativum: regulation by abscisic acid, gibberellic acid, and cell turgor. Plant Physiol 91:259–265

    Article  PubMed  CAS  Google Scholar 

  • Fernández B, Centeno ML, Feito I, Sánchez-Tamés R, Rodríguez A (1995) Simultaneous analysis of cytokinins, auxins and abscisic acid by combined immunoaffinity chromatography, high performance liquid chromatography and immunoassay. Phytochem Anal 6:49–54

    Article  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Garrison FR, Brinker AM, Noodén LD (1984) Relative activities of xylem-supplied cytokinins in retarding soybean leaf senescence and sustaining pod development. Plant Cell Physiol 25:213–224

    CAS  Google Scholar 

  • Gawronska H, Deji A, Sakakibara H, Sugiyama T (2003) Hormone-mediated nitrogen signaling in plants: implication of participation of abscisic acid in negative regulation of cytokinin-inducible expression of maize response regulator. Plant Physiol Biochem 41:605–610

    Article  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59:3039–3050

    Article  PubMed  CAS  Google Scholar 

  • Goren R, Huberman M, Goldschmidt EE (2003) Girdling: physiological and horticultural aspects. Hortic Rev 30:1–36

    Google Scholar 

  • Gusti MA, Gariglio N, Juan M, Almela V, Mesejo C (2005) Effect of branch scoring on fruit development in loquat. J Hortic Sci Biotechnol 80:370–374

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Havlova M, Dobrev PI, Motyka V, Storchova H, Libus J, Dobra J (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353

    Article  PubMed  CAS  Google Scholar 

  • He P, Jin JY (1999) Relationships among hormone changes, transmembrane flux of Ca2+ and lipid peroxidation during leaf senescing in spring maize. Acta Bot Sin 41:1221–1225

    CAS  Google Scholar 

  • He YH, Fukushige H, Hildebrand DF, Gan SS (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Horgan R, Scott IM (1987) Cytokinins. In: Rivier L, Crozier A (eds) The principles and practice of plant hormone analysis. Academic Press, London, pp 303–365

    Google Scholar 

  • Johnsen K, Maier C, Sanchez F, Anderson P, Butnor J, Waring R, Linder S (2007) Physiological girdling of pine trees via phloem chilling: proof of concept. Plant Cell Environ 30:128–134

    Article  PubMed  CAS  Google Scholar 

  • Juan M, Mesejo C, Martínez-Fuentes A, Reig M, Agustí M (2009) Branch scoring encourages fruit development and climacteric in persimmon. Sci Hortic 122:497–500

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Gao W (2004) Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiol Plantarum 121:250–257

    Article  CAS  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the ‘sink regulation’ of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript events after cold-girdling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Li CY, Weiss D, Eliezer E (2003) Girdling affect carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. Ann Bot 92:137–143

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Nam HG (2007) Aging and senescence of the leaf organ. J Plant Biol 50:291–300

    Article  CAS  Google Scholar 

  • Marani A, Baker DN, Reddy VR, McKinion JM (1985) Effect of water stress on canopy senescence and carbon exchange rates in cotton. Crop Sci 25:798–802

    Google Scholar 

  • McGaw BA, Burch LR (1995) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones. Kluwer Academic Publishers, Dordrecht, pp 98–117

    Chapter  Google Scholar 

  • McKenziel MJ, Mett V, Reynolds PHS, Jameson PE (1998) Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol 116:969–977

    Article  Google Scholar 

  • Mok MC, Martin RC, Mok DWS (2000) Cytokinins: biosynthesis, metabolism and perception. In Vitro Cell Dev Biol 36:102–107

    Article  CAS  Google Scholar 

  • Murakami PF, Schaberg PG, Shane JB (2008) Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn. Tree Physiol 28:1467–1473

    PubMed  CAS  Google Scholar 

  • Noodén LD, Singh S, Letham DS (1990) Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol 93:33–39

    Article  PubMed  Google Scholar 

  • Parrott DL, Yang L, Shama L, Fischer AM (2005) Senescence is accelerated, and several proteases are induced by carbon ‘feast’ conditions in barley (Hordeum vulgare L.) leaves. Planta 222:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Parrott DL, Mclnnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176:56–69

    Article  PubMed  CAS  Google Scholar 

  • Perrin Y, Doumas P, Lardets L, Carron MP (1997) Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation. Plant Cell Tiss Org Cult 47:239–245

    Article  Google Scholar 

  • Pic E, Serve BT, Tardieu F, Turc O (2002) Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiol 128:236–246

    Article  PubMed  CAS  Google Scholar 

  • Pourtau N, Marès M, Purdy S, Quentin N, Wingler A (2004) Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219:765–772

    Article  PubMed  CAS  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Mondal WA, Choudhuri MA (1983) Regulation of leaf senescence, grain filling and yield of rice by kinetin and abscisic acid. Physiol Plantarum 59:343–346

    Article  CAS  Google Scholar 

  • Rivas F, Fornes F, Agustí M (2008) Girdling induces oxidative damage and triggers enzymatic and non-enzymatic antioxidative defences in citrus leaves. Environ Exp Bot 64:256–263

    Article  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  PubMed  CAS  Google Scholar 

  • Robson PRH, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J 2:101–112

    Article  PubMed  CAS  Google Scholar 

  • Schippers JHM, Jing HC, Hille J, Dijkwel PP (2007) Developmental and hormonal control of leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell Publishing, Oxford, pp 145–170

    Chapter  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  Google Scholar 

  • Smart CM, Scofield SR, Bevan MW, Dyer TA (1991) Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3:647–656

    Article  PubMed  CAS  Google Scholar 

  • Steel RGD, Torrie JH (1980) Analysis of covariance. In: Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill, New York, pp 401–437

  • Tang QY, Feng MG (1997) Practical statistics and DPS data processing system. China Agri Press, Beijing, pp 1–407

    Google Scholar 

  • Tao GQ, Letham DS, Plani LMS, Summons RE (1983) Cytokinin biochemistry in relation to leaf senescence. I. The metabolism of 6-benzylaminopurine and zeatin in oat leaf segments. J Plant Growth Regul 2:89–102

    Article  CAS  Google Scholar 

  • Thomas H (1992) Canopy survival. In: Thomas H, Baker N (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier, Amsterdam, pp 11–41

    Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Plant Physiol 31:83–111

    Article  CAS  Google Scholar 

  • Trueman SJ, Turnbull CGN (1994) Fruit set, abscission and dry matter accumulation on girdled branches of macadamia. Ann Bot 74:667–674

    Article  Google Scholar 

  • Van Staden J, Upfold SJ, Altman A (1994) Metabolism of [14C] trans-zeatin and [14C] benzyladenine by detached yellow, green and variegated leaves of Schefflera. Physiol Plant 90:73–78

    Article  Google Scholar 

  • Wallerstein I, Goren R, Monselise SP (1978) Rapid and slow translocation of 14C sucrose and 14C-assimilates in Citrus and Phaseollus with special reference to ringing effect. J Hortic Sci 53:203–208

    CAS  Google Scholar 

  • Weiler EW (1982) Plant hormone immunoassay. Physiol Plantarum 54:230–234

    Article  CAS  Google Scholar 

  • Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399

    Article  PubMed  CAS  Google Scholar 

  • Wright PR (1999) Premature senescence of cotton (Gossypium hirsutum L.)—predominantly a potassium disorder caused by an imbalance of source and sink. Plant Soil 211:231–239

    Article  CAS  Google Scholar 

  • Yong JWH, Wong SC, Letham DS, Hocart CH, Farquhar GD (2000) Effects of elevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiol 124:767–779

    Article  PubMed  CAS  Google Scholar 

  • Zacarias L, Reid M (1990) Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiol Plant 80:549–554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the earmarked fund for Modern Agroindustry Technology Research System and the National Natural Science Foundation of China (30971720). We thank Dr. A. Egrinya Eneji of the University of Calabar, Nigeria, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezhong Dong.

Additional information

Communicated by K. Krupinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, J., Dong, H. Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Acta Physiol Plant 33, 1697–1705 (2011). https://doi.org/10.1007/s11738-010-0706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0706-4

Keywords

Navigation