Skip to main content
Log in

Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The suadea salsa full-length S-adenosylmethionine synthetase (SsSAMS2) was introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium tumefaciens-mediated transformation. The gene transformation and expression in tobacco were confirmed by PCR, RT-PCR and Northern blotting analysis. Several transgenic lines (ST lines) overexpressing SsSAMS2 gene under the control of cauliflower mosaic virus 35S promoter showed more seeds number and weight, and accumulated higher free total polyamines (PAs) than wild-type plants (WT lines) and transformants with blank vector (BT lines). Salt stress-induced damage was attenuated in these transgenic plants, in the symptom of maintaining higher photosynthetic rate and biomass. These results that the transgenic plants overexpressing suadea salsa SAMS2 are more tolerant to salt stress than wild-type plants suggest that PAs may play an important role in contributing salt tolerance to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAs:

Polyamines

SAMS:

S-adenosylmethionine synthetase

WT:

Wild-type tobacco

ST:

Transgenic lines with with suadea salsa SAMS2 cDNA

BT:

Transgenic lines with blank vector

References

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  PubMed  CAS  Google Scholar 

  • Basu R, Ghosh B (1991) Polyamines in various rice genotypes with respect to NaCl salinity. Physiol Plant 82:575–581

    Article  CAS  Google Scholar 

  • Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet 224:431–436

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  Google Scholar 

  • Cantoni GL (1953) S-adenosylmethionine: a new intermediate formed enzymatically from l-methionine and adenosinetriphosphate. J Biol Chem 204:403–416

    CAS  Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10:471–480

    PubMed  CAS  Google Scholar 

  • Dekeyser RA, Claes B, De Rycke R, Habets M, Van Montagu M, Caplan A (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2:591–602

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • El-Shintinawy F (2000) Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica 38:615–620

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelly DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  PubMed  CAS  Google Scholar 

  • Espartero J, Pintor-Toro JA, Pardo JM (1994) Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–227

    Article  PubMed  CAS  Google Scholar 

  • Flores HE (1991) Changes in polyamine metabolism in response to abiotic stress. In: Slocum RD, Flores HE (eds) The biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 214–255

    Google Scholar 

  • Galston AWG, Kaur-Sawhney R (1995) Polyamines as endogenous growth regulators. In: Davies PJ (ed) Plant Hormones. Kluwer, Dordrecht, C1: 158–178

  • Goren RN, Palavan N, Flores H, Galston AW (1982) Changes in polyamine titer in etiolated pea seedlings following red-light treatment. Plant Cell Physiol 23:19–26

    CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple method of transferring genes into plants. Science 277:1229–1231

    Google Scholar 

  • Izhaki A, Shoseyov O, Weiss D (1995) A petunia cDNA encoding S-adenosylmethionine synthetase. Plant Physiol 108:841–842

    Article  PubMed  CAS  Google Scholar 

  • Kawalleck P, Plesch G, Hahlbrock K, Somssich I (1992) Induction by fungal elicitor of S-adenosyl-l-methionine synthetase and S-adenosyl-l-methionine hydrolase mRNA in cultured cells and leaves of Petroselinum crispum. Proc Natl Acad Sci USA 89:4713–4717

    Article  PubMed  CAS  Google Scholar 

  • Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, Ok HM, Park SJ, Lee S–H, Yun D-J, Lim CO, Bahk JD, Lee SY, Cho MJ (2002) Over-expression of a seed-specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 50:441–452

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Taylor MA, Mad Arif SA, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9:147–158

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Woodson WR (1991) Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cDNA from carnation. Plant Physiol 96:997–999

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Chan SY (2000) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor Appl Genet 100:782–788

    Article  CAS  Google Scholar 

  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Ma XL, Wang ZL, Qi YC, Zhao YX, Zhang H (2003) Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress. Acta Botanica Sinica 45(11):1359–1365

    CAS  Google Scholar 

  • Mansour MMF, Al-Mutawa MM (1999) Stabilization of plasma membrane by polyamines against salt stress. Cytobios 100:7–17

    CAS  Google Scholar 

  • McKeon TA, Fernández-Maculet JC, Yang SF (1995) Biosynthesis and metabolism of ethylene. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, B4: 118–139

  • Michael AJ, Furze JM, Rhodes MJ, Burtin D (1996) Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J 314:241–248

    PubMed  CAS  Google Scholar 

  • Mo H, Pua EC (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449

    Article  PubMed  CAS  Google Scholar 

  • Mutlu F, Bozcuk S (2005) Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russ J Plant Physiol 52:29–34

    Article  CAS  Google Scholar 

  • Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, VanMontagu M, Inzé D (1989a) Strong cellular preference in the expression of a housekeeping gene in Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1:81–93

    Article  PubMed  CAS  Google Scholar 

  • Peleman J, Saito K, Cottyn B, Engler G, Seurinck J, Van Montagu M, Inzé D (1989b) Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene 84:359–369

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43

    Article  CAS  Google Scholar 

  • Thu-Hang P, Bassie L, Safwat G, Treng-Nghia P, Christou P, Capell T (2002) Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S adenosyl-l-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol 129:1744–1754

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Gu Q, Zhu M (2003) The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci 165:701–707

    Article  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1990) Polyamine metabolism. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants: a comprehensive treatise, vol. 16, intermediary nitrogen metabolism. Academic Press, Orlando, pp 283–325

    Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Dekeyser R, Gielen D, Van Montagu M, Caplan A (1994) Characterization of a S-adenosylmethionine synthetase gene in rice. Plant Physiol 105:1463–1464

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt-stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • Whittaker DJ, Smith GS, Gardner RC (1995) Three cDNAs encoding S-adenosyl-l-methionine synthetase from Actinidia chinensis. Plant Physiol 108:1307–1308

    Article  PubMed  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhang L, Ma XL, Zhang Q, Ma CL, Wang PP, Zhao YX, Zhang H (2001) Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267:193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hi-Tech Research and Development (863) Program of China (2002AA629080) and the State Key Basic Research and Development Plan of China (G1995011700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Qun Liu.

Additional information

Communicated by L.A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, YC., Wang, FF., Zhang, H. et al. Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiol Plant 32, 263–269 (2010). https://doi.org/10.1007/s11738-009-0403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0403-3

Keywords

Navigation