Skip to main content
Log in

The molecular and biochemical characteristics of proline iminopeptidase from rye seedlings (Secale cereale L.)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A proline iminopeptidase (EC. 3.4.11.5) was isolated from shoots of 3 day old seedlings. The purification procedure consisted of 5 steps: acid precipitation, gel filtration on Sephadex G-200, ion-exchange chromatography on Sepharose CL 6B, twice repeated hydrophoic chromatography on Phenyl-Sepharose HP. The enzyme was purified 404.8-fold, with the specific activity of 8.5 units mg−1 of protein with recovery yield of 3%. The purified enzyme had a molecular mass of 225 kDa estimated by gel filtration and 55.4 kDa by SDS PAGE. This indicates that native enzyme is composed of four subunits. The enzyme was specific for proline β-naphtylamide among various amino acid β-naphtylamides.

An optimal activity was observed at 37 °C at pH 7.75. The enzyme was thermostable up to 37 °C for 30 min. The enzyme was strongly inhibited by pHMB, E-64, heavy metal ions and partially by PMSF, DFP. The results suggest that cysteine and serine residues may participate in the enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-ME:

2-mercaptoethanol

PAGE:

polyacrylamide gel electrophoresis

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

EDTA:

ethylenediaminetetraacetic acid

E-64:

transepoxysuccinyl-L-leucyloamido-(4-guanidino)butane

pHMB:

p-hydroxymercuribenzoic acid

βNA:

β-naphthylamide

PMSF:

phenyl methylsulfonyl fluoride

DFP:

diisopropyl fluorophosphate

References

  • Atlan D., Gilbert C., Blanc B., Portalier R. 1994. Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397. Microbiology 140: 527–535.

    PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Blum H., Baier H., Gross H.J. 1978. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99.

    Article  Google Scholar 

  • Caldwell J., Sparrow L. 1990. Purification and characterization of an unusual aminopeptidases from pea seeds. Aust. J. Plant Physiol. 7: 131–140.

    Article  Google Scholar 

  • Casano L.M., Desimone M., Trippi V.S. 1989. Proteolytic activities and alkaline pH oats leaves, isolation of an aminopeptidase. Plant Physiol. 91: 1414–1418.

    PubMed  CAS  Google Scholar 

  • Couton J.M., Sarat G., Wagner F.W. 1991. Purification and characterization of a soybean cotyledon aminopeptidase. Plant Sci. 75: 9–17.

    Article  CAS  Google Scholar 

  • Delauney A.J., Verma D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215–223.

    Article  CAS  Google Scholar 

  • Dubey R.S., Rani M. 1990. Influence of NaCl salinity on the behavior of protease, aminopeptidase and carboxypeptidase in rice seedlings in relation to salt tolerance. Aust. J. Plant Physiol. 30: 133–145.

    Google Scholar 

  • Eckey-Kaltenbach H., Ernst D., Heller W., Sanderman H. 1994. Biochemical plant responses to ozone IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.). plants. Plant Physiol. 1041: 67–74.

    Google Scholar 

  • Gu Y.Q., Walling L.L. 2002. Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Eur. J. Biochem. 269: 1630–1640.

    Article  PubMed  CAS  Google Scholar 

  • Inoue T., Ito K., Tozaka T., Hatakeyama S., Tanaka N., Nakamura K.T., Yoshimoto T. 2003. Novel inhibitor for prolyl aminopeptidase from Serratia marcescens and studies on the mechanism of substrate recognition of the enzyme using the inhibitor. Arch. Biochem. Biophys. 416:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Isola M.C., Franzoni L. 1996. Aminopeptidase activities in peanut cotyledons. R. Bras. Fisiol. Veg. 8: 167–173.

    CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lineweawer M., Burk D.J. 1934. The determination of enzyme dissociation constans. J. Am. Chem. Soc. 56: 658–666.

    Article  Google Scholar 

  • Kitazono A., Kabashima T., Huang H.S., Ito K., Yoshimoto T. 1996. Prolyl aminopeptidase gene from Flavobacterium meningosepticum: Cloning, purification of the expressed enzyme, and analysis of its sequence. Arch. Biochem. Biophys. 336: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Kolehmainen L., Mikola J. 1971. Partial purification and enzymatic properties of aminopeptidase from barley. Arch. Bioch. Biophys. 145: 633–642.

    Article  CAS  Google Scholar 

  • Mathushima M., Takahasi T., Ichinose M., Miki K., Kurokawa K., Tabakashi K. 1991. Prolyl aminopeptidase from pig intestinal mucosa and human liver: purification, characterization and possible identity with leucyl aminopeptidase. Biomed. Res. 12:323–33.

    Google Scholar 

  • Medrano F.J., Alonso J., García J.L., Romero A., Bode W., Gomis-Rüth F.X. 1998. Structure of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family. EMBO J. 17: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya K., Kawatani K., Tanaka S. 1982. Purification and properties of a proline aminopeptidases from apricot seeds. J. Biochem. 92: 413–421.

    PubMed  CAS  Google Scholar 

  • Oviedo Ovando M.E., Isola M.C., Maldonado A.M., Franzoni L. 2004. Purification of properties of iminopeptidase from peanut seeds. Plant Science 116: 1143–1148.

    Article  CAS  Google Scholar 

  • Schaller A. 2004. A cut above the rest: the regulatory function of plant proteases. Planta 220: 183–197.

    Article  PubMed  CAS  Google Scholar 

  • Simpson D.J. 2001. Proteolytic degradation of cereal prolamins — the problem with proline. Plant Science 161: 825–838.

    Article  CAS  Google Scholar 

  • Taylor A. 1993. Aminopeptidases: structure and function FASEB J. 7: 290–298.

    PubMed  CAS  Google Scholar 

  • van der Hoorn R.A.I., Jones J.D. 2004. The plant proteolytic machinery and its role in defense. Curr. Opin. Plant Biol. 55: 555–590.

    Google Scholar 

  • van der Valk, H.C.P.M. van Bentum M.I.A., van Loon L.C. 1989. Proteolytic enzymes in developing leaves of oats (Avena sativa L.). II. Aminoacyl-2-naphtylamidases. J. Plant Physiol. 135: 489–494.

    Google Scholar 

  • Varshavsky A., Byrd C. 1997. Recent studies of a N-end rule pathway FASEB J. 11: 1067–75.

    Google Scholar 

  • Walling L. 2006. Recycling or regulation? The role of amino-terminal modifying enzymes. Curr. Opin. Plant Biol. 9: 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Waters S.P., Dalling M.J. 1983. Isolation and some properties of an iminopeptidases from the primary leaf of wheat (Triticum aestivum L.). Plant Physiol. 73: 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka Y., Takeuchi M., Marohashi Y. 1994. Purification and partial characterization of an aminopeptidases from mung bean cotyledons. Physiol. Plant. 90: 729–733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Szawłowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szawłowska, U., Prus, W. & Bielawski, W. The molecular and biochemical characteristics of proline iminopeptidase from rye seedlings (Secale cereale L.). Acta Physiol Plant 28, 517–524 (2006). https://doi.org/10.1007/s11738-006-0047-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0047-5

Key words

Navigation