Skip to main content
Log in

Fluctuation in free and conjugated polyamines in Scots pine seedlings after changes in temperature and daylength

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Free, soluble and insoluble conjugated polyamines from the needles, roots and stem of five month old Scots pine (Pinus sylvestris L.) seedlings inoculated with Suillus variegatus (Fr.) O. Kuntze and seedlings without inoculation were analysed during decrease in daylength and temperature. Temporary changes in free, soluble and insoluble conjugated polyamine pools caused by a decrease in daylength or temperature were observed. Inoculation of pine seedlings affected significantly the polyamine levels of five month old pine seedlings. The roots of inoculated seedlings contained significantly higher levels of free and soluble conjugated purtrescine and free, soluble conjugated and insoluble conjugated spermidine than the roots of noninoculated seedlings. The needles of inoculated seedlings contained significatly higher concentrations of free putrescine and soluble conjugated spermidine but lower amount of free spermine than the needles of noninoculated seedlings. The stems of inoculated seedlings contained higher concentrations of free putrescine but lower amounts of insoluble conjugated spermine. Changes in polyamine levels in noninoculated seedlings were observed after shortening of the daylength, whereas in inoculated ones changes were induced mainly by the decrease in temperature. The possible role of polyamines in the initial stage of cold hardening process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreadakis A., Kotzabasis K. 1996. Changes in the biosynthesis and catabolism of the polyamines in isolated plastids during the chloroplast photodevelopment. J. Photochem. Photobiol. B. Biol. 33: 163–170.

    Article  CAS  Google Scholar 

  • Bagni N., Tassoni A. 2001. Biosynthesis, oxidation and conjugation of alipahtic polyamines in higher plants. Amino Acids 20: 301–317.

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A., Aziz A., Larher F., Martin-Tanguy J. 1999. Polyamines and environmental challenges: recent development. Plant Science 140: 103–125.

    Article  CAS  Google Scholar 

  • Clapham D.H., Kolugisaoglu H., Larsson L.-T., Quamaruddin M., Ekberg I., Wiegmann-Eirund C., Shneider-Poesch H.J., von Arnold S. 1999. Phytocrome types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Mol. Biol. 40: 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Del Duca S., Serafini-Fracassini D. 1993. Bound polyamines in plants. Current Topics Plant Physiol. 1: 83–102.

    Google Scholar 

  • El Ghachtouli A., Martin-Tanguy J., Paynot M., Gianinazzi S. 1996. First report of inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Letters 385: 189–192.

    Article  PubMed  Google Scholar 

  • Flores H.E. 1991. Changes in polyamine metabolism in response to stress. In: Biochemistry and physiology of polyamines in plants, ed. by Slocum, R.D., Flores, H.E., CRC Press Inc., Boca Raton, Florida: 213–228.

    Google Scholar 

  • Flores H.E., Martin-Tanguy J. 1991. Polyamines and plant secondary metabolites. In: Biochemistry and physiology of polyamines in plants, ed. by Slocum, R.D., Flores, H.E., CRC Press Inc., Boca Raton, Florida: 57–76.

    Google Scholar 

  • Fornalé S., Sarjala T., Bagni N. 1999. Endogenous polyamine content and metabolism in the ectomycorrhizal fungus Paxillus involutus. New Phytol. 143: 581–587.

    Article  Google Scholar 

  • Igarashi K., Kashiwagi K. 2000. Breakthroughs and views. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Comm. 271: 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Jouve L., Fouché J.G., Gaspar T. 1995. Early biochemical changes during acclimation of poplar to low temperature. J. Plant Physiol. 147: 247–250.

    CAS  Google Scholar 

  • Kakkar R.K., Sawhney V.K. 2002. Polyamine research in plants- a changing perspective. Physiol. Plant. 116: 281–292.

    Article  CAS  Google Scholar 

  • Kim T.E., Kim S.-K., Han T.J., Lee J.S., Chang S.C. 2002. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol. Plant. 115: 370–376.

    Article  PubMed  CAS  Google Scholar 

  • Königshofer H. 1989. Seasonal changes in polyamine content in different parts of juvenile spruce trees (Picea abies L. KARST.). J. Plant Physiol. 134: 736–740.

    Google Scholar 

  • Kramer G.W., Wang C.Y. 1989. Correlation of reduced chilling injury with increased spermine and spermidine levels in zucchini squash. Physiol. Plant. 76: 479–484.

    Article  CAS  Google Scholar 

  • Kushad M.M., Yelenosky G. 1987. Evaluation of polyamine and proline levels during low temperature acclimation of citrus. Plant. Physiol. 84: 692–695.

    PubMed  CAS  Google Scholar 

  • Kytöviita M.-M., Sarjala T. 1997. Effects of defoliation and symbiosis on polyamine levels in pine and birch. Mycorrhiza 7: 107–111.

    Article  Google Scholar 

  • Martin-Tanguy J. 1985. The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul. 3: 381–399.

    Article  CAS  Google Scholar 

  • Martin-Tanguy J. 1997. Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol. Plant. 100: 675–688.

    Article  CAS  Google Scholar 

  • Marx D.H. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153–163.

    Google Scholar 

  • Nadeau P., Delaney S., Chouinard L. 1987. Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa_L.). Plant Physiol. 84: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau P., Paquin R. 1988. Evolution of polyamines in winter cereal and forage species under field cold acclimation in Quebec Canada. Can. J. Plant Sci. 68: 449–456.

    Article  CAS  Google Scholar 

  • Niemi K., Häggman H., Sarjala T. 2002. Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol. 22: 373–381.

    PubMed  CAS  Google Scholar 

  • Niemi K., Häggman H., Sarjala T. 2003. Ectomycorrhizal fungal species and strains differ in their ability to produce free and conjugated polyamines. Mycorrhiza 13: 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Rabiti A.L., Pistocchi R., Bagni N. 1989. Putrescine uptake and translocation in higher plants. Physiol. Plant. 77: 225–230.

    Article  CAS  Google Scholar 

  • Sarjala T. 1999. Effect of organic and inorganic nitrogen sources on endogenous polyamines and growth of ectomycorrhizal fungi in pure culture. Mycorrhiza 8: 277–281.

    Article  CAS  Google Scholar 

  • Sarjala T., Kaunisto S. 1993. Needle polyamine concentrations and potassium nutrition in Scots pine. Tree Physiol. 13: 87–96.

    PubMed  CAS  Google Scholar 

  • Sarjala T., Kaunisto S. 2000. Ectomycorrhizae in Scots pine seedlings at different trophic levels of a drained mire. A preliminary study. Suo 51: 205–211.

    Google Scholar 

  • Sarjala T., Taulavuori K., Savonen E.-M., Edfast A.-B. 1997. Does availability of potassium affect cold hardening of Scots pine through polyamine metabolism? Physiol. Plant. 99: 56–62.

    Article  CAS  Google Scholar 

  • Smith H. 1995. Physiological and ecological function within the phytochrome family. Ann. Rev. Plant Physiol. Mol. Biol. 46: 289–315.

    Article  CAS  Google Scholar 

  • Songstad D.D., Duncan D.R., Wiholm J.M. 1990. Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J. Exp. Bot. 41: 289–294.

    Article  CAS  Google Scholar 

  • Sutinen M.-L., Ritari A., Holappa T., Kujala K. 1998. Seasonal changes in soil temperature and in the frost hardiness of Scots pine (Pinus sylvestris) roots under subarctic conditions. Can. J. For. Res. 28: 946–950.

    Article  Google Scholar 

  • Taulavuori K., Taulavuori E., Niinimaa A., Laine K. 1996. Frost resistance and pH of cell effusate in needles of artificially deacclimated Scots pine (Pinus sylvestris L.). Physiol. Plant. 96: 111–117.

    Article  CAS  Google Scholar 

  • Taulavuori K., Niinimaa A., Laine K., Taulavuori E., Lähdesmäki P. 1997. Modelling frost resistance of Scots pine seedlings using temperature, daylength and pH of cell effusate. Plant Ecol. 133: 181–189.

    Article  Google Scholar 

  • Taulavuori K., Taulavuori E., Sarjala T., Savonen E.-M., Pietiläinen P., Lähdesmäki P., Laine K. 2000. In vivo chlorophyll fluprescence is not always a good indicator of cold hardiness. J. Plant Physiol. 157: 227–229.

    CAS  Google Scholar 

  • Walters D., Cowley T., Mitchell A. 2002. Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J. Exp. Bot. 53: 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Walters D. 2003a. Polyamines and plant disease. Phytochemistry 64: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Walters D. 2003b. Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol. 159:109–115.

    Article  CAS  Google Scholar 

  • Yoshida I., Yamagata H., Hirasawa E. 1999. Blue-and red-light regulation and circadian control of gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil. J. Exp. Bot. 50: 319–326.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tytti Sarjala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarjala, T., Taulavuori, K. Fluctuation in free and conjugated polyamines in Scots pine seedlings after changes in temperature and daylength. Acta Physiol Plant 26, 271–279 (2004). https://doi.org/10.1007/s11738-004-0017-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0017-8

Key words

Navigation