Skip to main content
Log in

The xanthophyll cycle - molecular mechanism and physiological significance

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins.

The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VDE:

violaxanthin de-epoxidase

Vx:

violaxanthin

MGDG:

monogalactosyldiacylglycerol

DGDG:

digalactosyldiacylglycerol

PE:

phosphatidylethanolamine

Zx:

zeaxanthin

Ax:

antheraxanthin

Xc:

xanthophyll cycle

ZE:

zeaxanthin epoxidase

NPQ:

non-photochemical quenching

ABA:

abscisic acid

DTT:

dithiothreitol

SCR:

short conservative motifs

HII :

reversed hexagonal structure

References

  • Adams W.W.III., Demmig-Adams B., Verhoeven A.S., Baker D.H. 1995. Photoinhibition during winter stress: Involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust. J. Plant Physiol., 22: 261–276.

    Article  CAS  Google Scholar 

  • Adamska I. 1997. ELIPs - light induced stress proteins. Physiol. Plant., 100: 794–805.

    Article  CAS  Google Scholar 

  • Åkerlund H-E., Arvidsson P-O., Bratt C.E., Carlsson M. 1995. Partial purification of the violaxanthin deepoxidase. In “Photosynthesis from light to Biosphere” (Mathias, P. red.) vol. IV, pp: 103–106, Kluwer Academic Publishers, Dortrecht.

    Google Scholar 

  • Åkerstrom B., Flower R.D., Salier J.P. 2000. Lipocalins: unity in diversity. Biochim. Biophys. Acta, 1482: 1–8.

    PubMed  Google Scholar 

  • Arvidsson P-O., Bratt C.E., Carlsson M., Ckerlund H-E. 1996. Purification and identification of the violaxanthin deepoxidase as a 43kDa. Photosynth. Res., 49: 119–129.

    Article  CAS  Google Scholar 

  • Arvidsson P-O., Carlsson M., Stefansson H., Albertsson P-A., Ckerlund H-E. 1997. Violaxanthin accessibility and temperature dependency for de-epoxidation in spinach thylakoid membranes. Photosynth. Res., 52: 39–48.

    Article  CAS  Google Scholar 

  • Audran C., Borel C., Frey A., Sotta B., Meyer C., Simonneau T., Marion-Poll A. 1998. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol., 118: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Barker A., Manning P.A. 1997. VlpA of Vibrio cholerae O1: the first bacterial member of the alpha 2-microglobulin lipocalin superfamily. Microbiology, 143: 1805–1813.

    Article  PubMed  CAS  Google Scholar 

  • Bassi R., Pineau B., Dainese P., Marquardt J. 1993. Carotenoid-binding proteins of photosystem II. Eur. J. Biochem., 212: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Bishop R.U. 2002. The bacterial lipocalins. Biochim. Biophys. Acta, 1482: 73–83.

    Google Scholar 

  • Bouvier F., d’Harlingues A., Hugueney P., Marin E., Marion-Poll A., Camara B. 1996. Xanthophyll biosynthesis: Cloning, expression, functional reconstitution, and regulation of b-cycloxenyl carotenoid epoxidase from pepper (Capsicum annum). J. Biol. Chem., 271: 28861–28867.

    Article  PubMed  CAS  Google Scholar 

  • Bratt C.E., Arvidsson P-E., Carlsson M., Kerlund H-E. 1995. Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosyth. Res., 45: 165–175.

    Google Scholar 

  • Büch K., Stransky K., Hager A. 1996. FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. FEBS Lett., 376: 45–48.

    Article  Google Scholar 

  • Bugos R.C., Hieber A D., Yamamoto H.Y. 1998. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J. Biol. Chem., 273: 15321–15324.

    Article  PubMed  CAS  Google Scholar 

  • Bugos R.C., Yamamoto H.Y. 1996. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc. Natl. Acad. Sci. USA, 93: 6320–6325.

    Article  PubMed  CAS  Google Scholar 

  • Bungard R.A., Ruban A.V., Hibberd J.M., Press M.C., Horton P., Scholes J.D. 1999. Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc. Natl. Acad. Sci. USA, 96: 1135–9.

    Article  PubMed  CAS  Google Scholar 

  • Burbidge A., Grieve T., Terry C., Corlett J., Thompson A., Taylor I. 1997. Gene note. Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J. Exp. Bot.. 48: 1749–1750.

    CAS  Google Scholar 

  • Burton G.W., Ingold K.U. 1984. Beta-Carotene: an unusual type of lipid antioxidant. Science, 224: 569–573.

    Article  PubMed  CAS  Google Scholar 

  • De Kruijff B., Verkeley A.J., van Echteld C.J.A., Gerritsen W.J., Mombers C., Noordam P.C., de Gier J. 1979. The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze-fracture microscopy. Biochim. Biophys. Acta, 555:200–209.

    Article  PubMed  Google Scholar 

  • Demmig B., Winter K., Krüger A., Czygan F.-C. 1987a. Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol., 84: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Demmig B., Winter K., Krüger A., Czygan F.-C. 1987b. Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a cobination of high light and water stress. Plant Physiol., 87:17–24.

    Article  Google Scholar 

  • Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: A role for the xanthophylls zeaxanthin. Biochim. Biophys. Acta, 1020: 1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W.III, Logan B.A., Verhoeven A.S. 1995. Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Aust. J. Plant Physiol., 22: 249–260.

    Article  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W.III. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43:599–626.

    Article  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W.III., Heber U., Neimanis S., Winter K., Krüger A., Czygan F.-C., Bilger W., Björkman O. 1990. Inhibition of zeaxanthin formation and of rapid changes in radiotionless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol., 92: 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Eskling M. 1998. The xanthophyll cycle. Its enzyme, pigments and regulation. Doctoral Dissertation. Departament of Pland Biochemistry, Lund University, Sweden.

    Google Scholar 

  • Eskling M., Arvidsson P-O, Ckerlund H.-E. 1997. The xanthophyll cycle, its regulation and components. Physiol. Plant., 100: 806–816.

    Article  CAS  Google Scholar 

  • Färber A., Jahns P. 1998. The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. Biochim. Biophys. Acta, 1363: 47–58.

    Article  PubMed  Google Scholar 

  • Finer E.G., Drake A. 1974. A phospholipid hydratation studied by deuteron magnetic resonance spectroscopy. Chem. Phys. Lipids, 12: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Flower D.R. 1996. The lipocalin protein family: structure and function. Biochem. J., 318: 1–14.

    PubMed  CAS  Google Scholar 

  • Flower D.R., North A.C., Attwood T.K. 1993. Structure and sequence relationships in the lipocalins and related proteins. Protein. Sci., 2:753–761.

    Article  PubMed  CAS  Google Scholar 

  • Flower D.R., North A.C., Sansom C.E. 2000. The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta, 1482: 9–24.

    PubMed  CAS  Google Scholar 

  • Foyer C., Lelandais M. 1996. A comparision of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mosophyll cells. J. Plant Physiol., 148: 391–398.

    CAS  Google Scholar 

  • Frank H.A., Cua A., Chynwat V., Young A., Gosztola D., Wasielewski M.R. 1994. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res., 41: 389–395.

    Article  CAS  Google Scholar 

  • Frommolt R, Goss R, Wilhelm C. 2001. The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach. Planta, 213:446–56

    Article  PubMed  CAS  Google Scholar 

  • Fryer M.J., Oxborough K., Mullineaux P.M., Baker N.R. 2002. Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot., 53:1249–54.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Plazaola J.I., Hernandez A., Errasti A., Becerril J.M. 2002. Occurrence and operation of the lutein epoxide cycle in quercus species. Functional Plant Biology, 29: 1075–1080.

    Article  CAS  Google Scholar 

  • Garcia-Plazaola J.I., Hernandez A., Olano J. M., Becerril J.M. 2003. The operation of the lutein epoxide cycle correlates with energy dissipation. Functional Plant Biology, 30: 319–324.

    Article  CAS  Google Scholar 

  • Gilmore A.M., Hazlett T.L., Govindjee 1995. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc. Natl. Acad. Sci. USA, 92: 2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore A.M., Mohanty N., Yamamoto H.Y. 1994. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH. FEBS Lett., 350:271–4.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore A.M., Yamamoto H.Y. 1993. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth. Res., 35: 67–78.

    Article  CAS  Google Scholar 

  • Gilmore A.M., Yamamoto H.Y. 2001. Time-resolution of the antheraxanthin-and pH-dependent chlorophyll a fluorescence components associated with photosystem II energy dissipation in Mantoniella squamata. Photochem. Photobiol., 74: 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Goss R., Böhme K., Wilhelm C. 1998. The xanthophylls cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205: 613–621.

    Article  CAS  Google Scholar 

  • Gounaris K., Sundby C., Andersson B., Barber J. 1983a. Lateral heterogeneity of polar lipids in the thylakoid membranes of spinach chloroplasts. FEBS Lett., 156: 170–174.

    Article  CAS  Google Scholar 

  • Gounaris K., Whitford D., Barber J. 1983b. The effect of thylakoid lipids on an oxygen-evolving Photosystem II preparation. FEBS Lett., 163: 230–234.

    Article  CAS  Google Scholar 

  • Grotz B., Molnár P., Stransky H., Hager A. 1999. Substrate specificity and functional aspects of violaxanthin-de-epoxidase, an enzyme of the xanthophyll cycle. J. Plant Physiol., 154: 437–446.

    CAS  Google Scholar 

  • Gruszecki W.I. 1995. Different aspects of protective activity of the xanthophyll cycle under stress conditions. Acta Physiol. Plant., 17:145–152.

    CAS  Google Scholar 

  • Gruszecki W.I., Krupa Z. 1993. LHCII, the major light-harvesting pigment-protein complex is a zeaxanthin epoxidase. Biochim. Biophys. Acta, 1144: 97–101.

    Article  CAS  Google Scholar 

  • Gruszecki W.I., Matuła M., My liwa-Kurdziel B., Kernen P., Krupa Z., Strzałka K. 1997. Effect of xanthophyll pigments on fluorescence of chlorophyll a in LHCII embedded to liposomes. J. Photochem. Photobiol., 37: 84–90.

    Article  CAS  Google Scholar 

  • Gruszecki W.I., Sielewiesiuk J. 1991. Galactolipid multibilayers modified with xanthophylls: orientational and diffractometric studies. Biochim. Biophys. Acta, 1069: 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Gruszecki W.I., Strzałka K. 1991. Does the xanthophyll cycle takes part in the regulation of the fluidity of the thylakoid membrane?. Biochim. Biophys. Acta, 1060: 310–314.

    Article  CAS  Google Scholar 

  • Hager A. 1966. Die Zusammenhange zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktion. Ber. Dtsch. Bot. Ges., 79: 94–107.

    CAS  Google Scholar 

  • Hager A. 1969. Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin — Zeaxanthin — Umwandlungen; Beziehungen zur Photophosphorylierung. Planta, 89: 224–243.

    Article  CAS  Google Scholar 

  • Hager A. 1975. Die reversiblen, lichtabhängigen Xanthophyllumwandlungen im chloroplasten. Ber. Dtsch. Bot. Ges., 88: 27–44.

    CAS  Google Scholar 

  • Hager A. 1980: The reversible light-induced conversions of xanthophylls in the chloroplast. In: F.-C. Czygan Ed., Pigments in Plants, Fischer, Stuttgart, pp. 57–79

    Google Scholar 

  • Hager A., Holocher K. 1994. Localisation of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of this mobility by a (light-dependent) pH decrease. Planta 192: 581–589.

    Article  CAS  Google Scholar 

  • Hara czyk H., Strzałka K., Dietrich W., Blicharski J.S. 1995. 31P-NMR observation of the temperature and glycerol induced non-lamelar phase formation in wheat thylakoid membrane. J. Biol. Phys., 21: 125–139.

    Article  Google Scholar 

  • Härtel H., Lokstein H., Grimm B., Rank B. 1996. Kinetics studies on the xanthophyll cycle in barley leaves: Influence of antenna size and relations to non-photochemical chlorophyll fluorescence quenching. Plant Physiol., 110: 471–482.

    PubMed  Google Scholar 

  • Havaux M., Gruszecki W.I. 1993. Heat- and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indication of a regulatory effect of zeaxanthin on thylakoid membrane fluidity. Photochem. Photobiol., 58: 607–614.

    Article  CAS  Google Scholar 

  • Havaux M., Gruszecki W.I., Dupont I., Leblanc R.M. 1991. Increased heat emission and its relationship to the xanthophyll cycle in pea leaves exposed to strong light stress. J. Photochem. Photobiol. B. Biol., 8: 361–370.

    Article  CAS  Google Scholar 

  • Havaux M., Niyogi K.K. 1999. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA, 96: 8762–8767.

    Article  PubMed  CAS  Google Scholar 

  • Havir E.A., Tausta S.L., Peterson R.B. 1997. Purification and properties of violaxanthin de-epoxidase from spinach. Plant Sci., 123: 57–66.

    Article  CAS  Google Scholar 

  • Hieber A.D., Bugos R.C., Yamamoto Y. 2000. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim. Biophys. Acta, 1482: 84–91.

    PubMed  CAS  Google Scholar 

  • Holden H.M., Rypniewski W.R., Law J.H., Rayment I. 1987. The molecular structure of insecticyanin from the tobacco hornworm Manduca sexta L. at 2.6 C resolution. EMBO J., 6: 1565–70.

    PubMed  CAS  Google Scholar 

  • Horton P., Ruban A.V., Rees D., Pascal A.A., Noctor G., Young A.J. 1991. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett., 292: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili J.N., Mitchell D.J. 1975. A model for the packing of lipids in bilayer membranes. Biochim. Biophys. Acta, 389: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov A.G., Krol M., Maxwell D., Huner N.P. 1995. Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. FEBS Lett., 371: 61–4.

    Article  PubMed  CAS  Google Scholar 

  • Jagannadham M.V., Chattopadhyay M.K, Subbalakshmi C., Vairamani M., Narayanan K., Rao C.M., Shivaji S. 2000. Carotenoids of an Antarctic psychrotolerant bacterium, Spihingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch. Microbiol., 173: 418–24.

    Article  PubMed  CAS  Google Scholar 

  • Jahns P., Schweig S. 1995. Energy-dependent fluorescence quenching in the thylakoids from intermittent light grown pea plants: Evidence for an interaction of zeaxanthin and the chlorophyll a/b binding protein CP26. Plant Physiol. Biochem., 33:683–687.

    CAS  Google Scholar 

  • Jakob T., Goss R., Wilhelm C. 2001. Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol., 158: 383–390.

    Article  CAS  Google Scholar 

  • Jin E.S., Polle J.E., Melis A. 2001. Involvement of zeaxanthin and the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Biochim Biophys Acta, 1506: 244–59.

    Article  PubMed  CAS  Google Scholar 

  • Kontopidis G., Holt C., Sawyer L. 2002. The ligand-binding site of bovine beta-lactoglobulin: Evidence for a function? J.Mol.Biol., 318: 1043–55.

    Article  PubMed  CAS  Google Scholar 

  • Kostecka-Gugala A., Latowski D., Strzałka K. 2003. Thermotropic phase behaviour of alpha-dipalmitoyl-phosphatidylcholine multibilayers is influenced to various extents by carotenoids containing different structural features-evidence from differential scanning calorimetry. Biochim Biophys Acta, 1609:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Kraulis P.J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst., 24, 946–950.

    Article  Google Scholar 

  • Krause G.H, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42: 313–349.

    Article  CAS  Google Scholar 

  • Krause G.H. 1988. Photoinhibition of photosynthesis. An evolution of damaging and protective mechanisms. Physiol. Plant., 74: 566–574.

    Article  CAS  Google Scholar 

  • Krinsky N.I. 1966. The role of carotenoid pigments as protective agents against photosensitized oxidations in chloroplasts. In “Biochemistry of Chloroplasts” (T.W. Goodwin ed.), Acad. Press. London and New York: vol. 1: 423.430.

    Google Scholar 

  • Krinsky N.I. 1979. Carotenoid protection against oxidation. Pure Appl. Chem., 51: 649–660.

    Article  CAS  Google Scholar 

  • Külheim C., Cgren J., Jansson S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science, 297: 91–93.

    Article  PubMed  Google Scholar 

  • Latowski D., Åkerlund H-E., Strzałka K. 2004. Violaxanthin de-epoxidease, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry, 43: 4417–20.

    Article  PubMed  CAS  Google Scholar 

  • Latowski D., Kostecka A., Strzałka K. 2000. Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes. Biochem Soc Trans., 28: 810–2.

    Article  PubMed  CAS  Google Scholar 

  • Latowski D., Kruk J., Burda K., Skrzynecka-Jaskier M., Kostecka-Gugała A., Strzałka K. 2002. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur. J. Biochem., 269: 4656–65.

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J., Rosseau B., Etienne A.L. 2002a. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett., 523: 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J., Rosseau B., van Gorkom H.J., Etienne A.L. 2002b. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol., 129: 1398–1406.

    Article  PubMed  CAS  Google Scholar 

  • Lazrak T., Milon A., Wolff G., Albrecht A.-M., Miehe M., Ourisson G., Nakatani Y. 1987. Comparision of the effects of inserted C40- and C50-terminally dihydroxylated carotenoids on the mechanical properties of various phospholipid vesicles. Biochim. Biophys. Acta, 903: 132–141.

    Article  PubMed  CAS  Google Scholar 

  • Lee A., Thornber J.P. 1995. Analysis of the pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II. Plant Physiol., 107: 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Leipner J., Stamp P., Fracheboud Y. 2000. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta, 210: 964–9.

    Article  PubMed  CAS  Google Scholar 

  • Li X.P., Stamp P., Niyogi K.K. 2002. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent non-photochemical quenching in photosystem II. J. Biol. Chem., 33590–33597.

  • Lim B.P., Nagao A., Terao J., Tanaka, Suzuki T., Takama K. 1992. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid membrane. Biochem. Biophys. Acta, 1126: 178–184.

    PubMed  CAS  Google Scholar 

  • Lis L.J., McAlister M.N., Fuller R.P., Oarsegain V.A. 1982. Measurement of the lateral compressibility of several phospholipid bilayers. Biophys. J., 37: 657–666.

    PubMed  CAS  Google Scholar 

  • Lohr M., Wilhelm C. 1999. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl. Acad. Sci. USA, 96: 8784–9.

    Article  PubMed  CAS  Google Scholar 

  • Ma Y.Z., Holt N.E., Li X.P., Niyogi K.K., Fleming G.R. 2003. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl. Acad. Sci. USA, 100: 4377–82.

    Article  PubMed  CAS  Google Scholar 

  • Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A., Marion-Poll A. 1996. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and coresponding to the ABA locus of Arabidopsis thaliana. EMBO J., 15: 2331–2342.

    PubMed  CAS  Google Scholar 

  • Matsubara S., Gilmore A.M., Osmond C.B. 2001. Diurnal and acclamatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii Aust. J. Plant Physiol., 28: 793–800.

    CAS  Google Scholar 

  • Merritt E.A., Bacon D.J. 1997. Raster3D Photorealistic Molecular Graphics’. Methods in Enzymology, 277: 505–524.

    Article  CAS  PubMed  Google Scholar 

  • Muller-Moule P., Conklin P.L., Niyogi K.K. 2002. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol., 128: 970–977.

    Article  PubMed  CAS  Google Scholar 

  • Munne-Bosch S., Alegre L. 2002. Plant aging increases oxidative stress in chloroplasts. Planta, 214: 608–615.

    Article  PubMed  CAS  Google Scholar 

  • Neubauer C., Yamamoto H.Y. 1994. Membrane bariers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynth. Res., 39: 137–147.

    Article  CAS  Google Scholar 

  • Newcomer M.E., Jones T.A., Åqvist J., Sundelin J., Eriksson U., Rask L., Peterson P.A. 1984. The three-dimensional structure of retinol-binding protein. EMBO J.. 3: 1451–1454.

    PubMed  CAS  Google Scholar 

  • Newman G.C., Huang C. 1975. Structural studies on phophatidylcholine-cholesterol mixed vesicles. Biochemistry, 14: 3363–3370.

    Article  PubMed  CAS  Google Scholar 

  • Ono T., Nakazono K., Kosaka H. 1982. Purification and partial characterization of squalene epoxidase from rat liver microsomes. Biochim. Biophys. Acta, 709: 84–90.

    PubMed  CAS  Google Scholar 

  • Palmer J.M., Warpeha K.M.F., Briggs W.R. 1996. Evidence that zeaxanthin is not the photoreceptor for phototropism in maize coleoptiles. Plant Physiol., 110: 1323–1328.

    PubMed  CAS  Google Scholar 

  • Pasqualini S, Batini P., Ederli L., Antonielli M. 1999. Responses of the xanthophyll cycle pool and ascorbate-glutathione cycle to ozone stress in two tobacco cultivars. Free Rad. Res., 31 Suppl: 67–73.

    Article  Google Scholar 

  • Pervaiz, S., Brew, K. 1985. Homology of beta-lactoglobulin, serum retinol-binding protein, and protein HC. Science, 228: 335–337.

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P., Morales F., Moya I., Bassi R. 1995. Distribution of xantophyll cycle pigments in WT Arabidopsis and in a mutant blocked in zeaxanthin deepoxydation. in: P. Mathis, ed. “Photosynthesis: from Light to biosphere” IV, 95–98.

  • Peterson R.B., Havir E.A. 2000. A non-photochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta, 210: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Pogson B., McDonald K.A., Truoung M., Britton G., DellaPenna D. 1996. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell, 8: 1627–1639.

    Article  PubMed  CAS  Google Scholar 

  • Polivka T., Zigmantas D., Sundstrom V., Formaggio E., Cinque G., Bassi R. 2002. Carotenoid S(1) state in a recombinant light-harvesting complex of Photosystem II. Biochemistry, 41: 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Quinn P.J., Williams, W.P. 1983. The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta, 737: 223–266.

    CAS  Google Scholar 

  • Quinones M.A., Lu Z., Zeiger E. 1996. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism. Proc. Natl. Acad. Sci. USA, 93: 2224–2228.

    Article  PubMed  CAS  Google Scholar 

  • Quinones M.A., Zeiger E. 1994. A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles. Science, 264: 558–561.

    Article  CAS  Google Scholar 

  • Rockholm D.C., Yamamoto H.Y. 1996. Violaxanthin de-epoxidase. Plant Physiol., 110: 697–703.

    Article  PubMed  CAS  Google Scholar 

  • Ruban A.V., Horton P. 1999. The xanthophyll cycle modulates the kinetics of non-photochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol., 119: 531–542.

    Article  CAS  PubMed  Google Scholar 

  • Ruban A.V., Pascal A.A., Lee P.J., Robert B., Horton P. 2002. Molecular configuration of xanthophyll cycle carotenoids in photosystem II antenna complexes. J. Biol. Chem., 277: 42937–42942.

    Article  PubMed  CAS  Google Scholar 

  • Ruban A.V., Young A.J., Pascal A.A., Horton P. 1994. The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol., 104: 227–234.

    PubMed  CAS  Google Scholar 

  • Sapozhnikov D.I. 1967. Chemical structure of carotenoids and their conversion in the plant cell. Usp Sovrem Biol., 64: 248–67.

    PubMed  CAS  Google Scholar 

  • Sapozhnikov D.I. 1973. Investigation on the violaxanthin cycle. Pure Appl. Chem., 35: 47–61.

    Article  PubMed  CAS  Google Scholar 

  • Sapozhnikov D.I., Krasnovskaya T.A., Maevskaya A.N. 1957. Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light. Dokl. Akad. Nauk SSSR, 113: 465–467.

    CAS  Google Scholar 

  • Sarry J.-E., Montillet J.-L., Sauvaire Y., Havaux M. 1994. The protective function of the xanthophyll cycle in photosynthesis. FEBS Lett., 353: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Sen A., Williams W.P., Quinn P.J. 1981. The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems. Biochim. Biophys. Acta, 663: 380–9.

    PubMed  CAS  Google Scholar 

  • Sen, A., Hui, S-W. 1988. Direct measurement of headgroup hydration of polar lipids in inverted micelles. Chem. Phys. Lipids, 49: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Shipley G.G., Green, J.P., Nichols B.W. 1973. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim. Biophys. Acta, 311: 531–544.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann D., Yamamoto H.Y. 1975a. Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch. Biochem. Biophys., 171: 70–7.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann D., Yamamoto H.Y. 1975b. Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. IV. The effects of electron-transport conditions on violaxanthin availability. Biochim Biophys Acta, 387: 149–58.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann D., Yamamoto H.Y. 1975c. NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts. Biochem. Biophys. Res. Commun., 62: 456–61.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann-Harms D. 1977. The xnathophyll cycle in higher plants. In Tevini, T., Lichtenthaler, H.K., (eds.) “Lipids and lipid Polymers in Higher Plants”, 218–230, Springer, Berlin.

    Google Scholar 

  • Socaciu C., Jessel R., Diehl H A. 2000. Carotenoid incorporation microsomes: yields, stability and membrane dynamics. Chem. Phys. Lipids, 106: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Sokolove P., Marsho T.V. 1976. Ascorbate-independent carotenoid de-epoxidation in intact spinach chloroplasts. Biochim. Biophys. Acta, 430: 321–426.

    Article  PubMed  CAS  Google Scholar 

  • Sprague G.S., Staehelin L.A. 1984. Effect of reconstitution method on the structural organization of isolated chloroplast membrane lipids. Biochim. Biophys. Acta, 777: 306–322.

    Article  CAS  Google Scholar 

  • Srivastava A., Zeiger E. 1995. The inhibitor of zeaxanthin formation, dithiothreitol, inhibits blue-light stimulated stomatal opening in Vicia faba. Planta, 196: 445–449.

    Article  CAS  Google Scholar 

  • Stransky H., Hager A. 1970. The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. VI. Chemosystematic study. Arch Mikrobiol., 73: 315–23.

    Article  PubMed  CAS  Google Scholar 

  • Strzalka K., Gruszecki W. 1997. Modulation of thylakoid membrane fluidity by exogenously added carotenoids. J. Biochem. Mol. Biol. Biophys., 1:103–108.

    CAS  Google Scholar 

  • Subczy ski W.K., Markowska E., Gruszecki W.I., Sielewiesiuk J. 1992. Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim. Biophys. Acta, 1105: 97–108.

    Article  Google Scholar 

  • Subczy ski W.K., Markowska E., Sielewiesiuk J. 1991. Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim. Biophys. Acta, 1068: 68–72.

    Article  Google Scholar 

  • Talbott L.D., Zhu J., Han S.W., Zeiger E. 2002. Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum. Plant Cell Physiol., 43: 639–46.

    Article  PubMed  CAS  Google Scholar 

  • Tardy F., Havaux M. 1996. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photo-inhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. J. Photochem. Photobiol. B:Biol., 34: 87–94.

    Article  CAS  Google Scholar 

  • Tardy F., Havaux M. 1997. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim. Biophys. Acta, 1330: 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Thayer S.S., Björkman O. 1992. Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth. Res., 33: 213–225.

    Article  CAS  Google Scholar 

  • Tlalka M., Runquist M., Fricker M. 1999. Light perception and the role of the xanthophyll cycle in blue-light-dependent chloroplast movements in Lemna Trisulca L. Plant J., 20: 447–459.

    Article  CAS  PubMed  Google Scholar 

  • Urade Y., Hayaishi O. 2000. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta, 1482: 259–71.

    PubMed  CAS  Google Scholar 

  • van Venetië R., Verkleij A.J. 1981. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim. Biophys. Acta, 645: 262–269.

    Article  PubMed  Google Scholar 

  • Vrettos J.S., Limburg J., Brudvig G.W. 2001. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta, 1503:229–45.

    Article  PubMed  CAS  Google Scholar 

  • Walde P., Giuliani A.M., Boicelli C.A., Luisi P.L. 1990. Phospholipid-based reverse micelles. Chem. Phys. Lipids, 53:265–288.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H. Y., Takeguchi C. A. 1972. Concepts on the role of epoxy carotenoids in plants In Forti, G. Avron, M. and Melandri, A. eds, Proceedings of the 2nd international congress on photosynthesis research, Junk, The Hague, The Netherlands: 621–627.

    Google Scholar 

  • Yamamoto H.Y. 1979. Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem., 51: 639–648.

    Article  CAS  Google Scholar 

  • Yamamoto H.Y., Bassi R. 1996. Carotenoids: Localization and function. In “Oxygenic Photosynthesis: The Light Reactions (Ort, R. R., Yocum, C.F., eds.) pp. 539–563, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Yamamoto H.Y., Chenchin E.E., Yamada D.K. 1974. Effect of chloroplast lipids on violaxanthin de-epoxidase activity. In Avron, M. (ed.) Proc. 3rd Int. Cong. Photosyn., Elsevier Scientific, Amsterdam pp. 1999–2006.

    Google Scholar 

  • Yamamoto H.Y., Higashi R.M. 1978. Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch. Biochem. Biophys., 190:514–22.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H.Y., Kamite L. 1972. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim. Biophys. Acta, 267:538–43.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H.Y., Nakayama T.O.M., Chichetser C.O. 1962. Studies on the light and dark interconversions of leaf xanthophylls Arch. Biochem., 97: 168–173.

    Article  PubMed  CAS  Google Scholar 

  • Zudaire L., Roy S.J. 2001. Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weissflogii. Photochem. Photobiol. B, 62: 26–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latowski, D., Grzyb, J. & Strzałka, K. The xanthophyll cycle - molecular mechanism and physiological significance. Acta Physiol Plant 26, 197–212 (2004). https://doi.org/10.1007/s11738-004-0009-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0009-8

Key words

Navigation