Skip to main content
Log in

Influence of putrescine on anthocyanin production in callus cultures of Daucus carota mediated through calcium ATPase

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The influence of Putrescine (Put) on the growth and elicitation of anthocyanin in callus cultures of Daucus carota var. Nantes scarlet was investigated through the use of α-DL-difluoromethylarginine (DFMA), the polyamine (PA) biosynthetic inhibitor. It was observed that the addition of Put (0.05 mM) resulted in enhancement of growth and anthocyanin content. The anthocyanin content was found to be enhanced by 1.68 fold on the 21st day as compared to the untreated controls. The PA inhibitor was found to result in lowering of the growth and the anthocyanin accumulation, which could be partially restored by the addition of Put in combination with this inhibitor. The levels of Ca2+ ATPase were also found to be elevated in treatment with Put suggesting the involvement of calcium in the elicitation of anthocyanin. The endogenous titres of PAs and the ethylene production under these treatments were also studied. The treatment with DFMA resulted in lower levels of endogenous PAs and higher levels of ethylene. Lowering of ethylene by putrescine treatment shows that PA treatment also inhibited ethylene formation, which would also imply that endogenous ethylene does not influence anthocyanin production in carrot callus cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAs:

Polyamines

Put:

Put-rescine

Spd:

Spermidine

Spm:

Spermine

DFMA:

α-DL-difluoromethylarginine

DFMO:

α-DL-difluoromethylornithine

SAM:

S-adenosylmethionine

ODC:

Ornithine decarboxylase

ACC:

aminocyclopropane-carboxylic acid

2,4-D:

2,4-Dichlorophenoxy acetic acid

Kn:

Kinetin

IAA:

Indole 3- acetic acid

PCA:

perchloric acid

References

  • Antognoni F.R., Pistocchi P., Casali P., Bagni N. 1995. Does calcium regulate polyamine uptake in carrot protoplasts? Plant Physiol. Biochem., 33: 701–708.

    CAS  Google Scholar 

  • Apelbaum A., Burgoon A.C., Anderson J.D., Lieberman M., Ben-Arie R., Mattoo A.K. 1981. Polyamines inhibit biosynthesis of ethylene in higher-plant tissue and fruit protoplasts. Plant Physiol., 68: 453–456.

    PubMed  CAS  Google Scholar 

  • Apelbaum A., Vinkler C., Sfakiotakis E., Dilley D.R. 1984. Increased mitochondrial DNA and RNA polymerase activity in ethylene-treated potato tubers. Plant Physiol., 76: 461–464.

    PubMed  CAS  Google Scholar 

  • Bagni N., Fracassini D.S., Torrigiani P. 1982. Polyamines and cellular growth processes in higher plants. In: Plant Growth Substances, ed. by P.F. Wareing, Academic Press, London: 473–482.

    Google Scholar 

  • Bais H.P., Sudha G., Ravishanker G.A. 2000. Enhancement of growth and coumarin production in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local) under the influence of fungal elicitors. J Biosci. Bioeng., 90: 648–653.

    Article  PubMed  CAS  Google Scholar 

  • Baykov A.A., Evtushenko O.A., Avaeva S.M. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem., 171: 266–270.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Arie R., Lurie S., Mattoo A.K. 1982. Temperature-dependent inhibitory effects of calcium and spermine on ethylene biosynthesis in apple discs correlate with changes in microsomal membrane microviscosity. Plant Sci. Lett., 24: 239–247.

    Article  CAS  Google Scholar 

  • Berlin J., Forche E. 1981. DL-α-difluoromethyl-ornithine causes enlargement of cultured tobacco cells. Z. Pflanzenphysiol., 101: 272–282.

    Google Scholar 

  • Berta G., Altamura M.M., Fusconi A., Cerruti F., Capitani F., Bagni N. 1997. The plant cell wall is altered by inhibition of polyamine biosynthesis. New Phytol., 137: 569–577.

    Article  CAS  Google Scholar 

  • Biddington N.L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regul., 11: 173–178.

    Article  CAS  Google Scholar 

  • Chi C.L., Lin W.S., Lee J.E.E., Pua E.C. 1994. Role of polyamines on de novo shoot morphogenesis from cotyledons of B. campestris spp. pekinesis (lour) olsson, in vitro. Plant Cell Rep., 13: 323–329.

    Article  CAS  Google Scholar 

  • Cohen E., Arad S.M., Heimer Y.M., Mizrahi Y. 1982. Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol., 70: 540–543.

    PubMed  CAS  Google Scholar 

  • Evans P.T., Malmberg R.L. 1989. Do polyamines have a role in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol., 40: 235–269.

    CAS  Google Scholar 

  • Even-Chen Z., Mattoo A.K., Goren R. 1982. Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunt label from C14-methionine into spermidine in aged orange peel discs. Plant Physiol., 69: 385–388.

    PubMed  CAS  Google Scholar 

  • Fienberg A.A., Choi J.H., Lubich W.P., Sung Z.R. 1984. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta, 162: 532–539.

    Article  CAS  Google Scholar 

  • Feirer R.P., Mignon G., Litvay J.D. 1984. Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science., 223: 1433–1435.

    Article  CAS  PubMed  Google Scholar 

  • Flores H.E., Galston A.W. 1982. Analysis of polyamines in higher plants. Plant Physiol., 69: 701–706.

    PubMed  CAS  Google Scholar 

  • Freund J.E., Perles B.M. 1999. Sampling and sampling distributions. In: Statistics. A first course. Prentice Hall International, Inc. pp. 261–288.

  • Fuhrer J., Kaur-Sawhney R., Shih L.M., Galston A.W. 1982. Effects of exogenous 1,3-diaminopropane and spermidine on senescence of oat leaves. Plant Physiol., 70: 1597–1600.

    PubMed  CAS  Google Scholar 

  • Galston A.W., Kaur-Sawhney R.K. 1990. Polyamines in plant physiology. Plant Physiol., 94: 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Heimer Y.H., Mizrahi Y., Bachrach U. 1979. Ornithine decarboxylase activity in rapidly proliferating plant cells. FEBS Lett., 104: 146–149.

    Article  PubMed  CAS  Google Scholar 

  • Kallio A., McCann P., Bey P. 1981. DL-α (difluoromethyl)arginine: a potent enzyme-activated inhibitor of bacterial arginine decarboxylase. Biochemistry., 20: 3163–3166.

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki, F., Matsushita M., Nishi, A. 1992. Essential role of polyamines in growth of cultured carrot cells. Phytochem., 31: 3889–3892.

    Article  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the folin phenol reagent. J Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Mader J.C., Hanke D.E. 1997. Polyamine sparing may be involved in the prolongation of cell division due to inhibition of phenylpropanoid synthesis in cytokinin-starved soybean cells. J. Plant Growth Regul., 16: 89–93.

    Article  CAS  Google Scholar 

  • Mattoo A.K., Baker J.E., Chalutz E., Lieberman M. 1977. Effect of temperature on the ethylene-synthesising systems in apple, tomato and Penicillum. Plant Cell Physiol., 18: 715–719.

    CAS  Google Scholar 

  • Meijer E.G.M., Simmonds J. 1988. Polyamine levels in relation to growth and somatic embryogenesis in tissue cultures of Medicago sativa L. J. Exp. Bot., 203: 787–794.

    Article  Google Scholar 

  • Metcalf B.W., Bey P., Danzin C., Jung M.J., Casara P., Ververt J.P. 1978. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J Amer. Chem. Soc., 100: 2551–2553.

    Article  CAS  Google Scholar 

  • Mizusaki S., Tanabe Y., Noguchi M., Tamaki E. 1973. Phytochemical studies on tobacco alkaloids. XVI. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase, and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol., 14: 103–110.

    CAS  Google Scholar 

  • Murashige M., and Skoog T. 1962. A revised medium for rapid growth and bioassay of tobacco tissue cultures. Physiol. Plant., 15: 473–497.

    Article  CAS  Google Scholar 

  • Palavan N., Galston A.W. 1982. Polyamine biosynthesis and titer during various developmental stages of Phaseolus vulgaris. Physiol. Plant., 55: 438–444.

    Article  CAS  Google Scholar 

  • Phillips R., Press M.C., Bingham L., Grimmer C. 1988. Polyamines in cultured artichoke explants: effects are primarily on xylogenesis rather than cell division. J Exp. Bot. 39: 473–480.

    Article  CAS  Google Scholar 

  • Slocum R.D., Kaur-Sawhney R., Galston A.W. 1984. The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys., 235: 283–303.

    Article  PubMed  CAS  Google Scholar 

  • Smith T.A., Best G.R., Abbott J., Clements E.D. 1978. Polyamines in Paul’s scarlet rose suspension cultures. Planta, 144: 63–68.

    Article  CAS  Google Scholar 

  • Stickland G.G., Sundarland N. 1972. Production of anthocyanins, flavonols and chlorogenic acid by cultured callus tissues of Happlopappus gracilis. Ann. Bot., 36: 443–457.

    CAS  Google Scholar 

  • Stroinski A., Szczotka Z. 1989. Effect of cadmium and Phytophthora infestans on polyamine levels in potato leaves. Physiol. Plant., 77: 244–246.

    Article  CAS  Google Scholar 

  • Suttle J.C. 1981. Effect of polyamines on ethylene production. Phytochem., 20: 1477–1480.

    Article  CAS  Google Scholar 

  • Vambutas V.K., Racker E. 1965. Partial resolution of the enzymes catalyzing photophosphorylation. I. Stimulation of photophosphorylation by a preparation of latent, Ca++ dependent adenosine triphosphatase from chloroplasts. J Biol. Chem., 240: 2660–2667.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar G. A..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudha, G., Ravishankar, G.A. Influence of putrescine on anthocyanin production in callus cultures of Daucus carota mediated through calcium ATPase. Acta Physiol Plant 25, 69–75 (2003). https://doi.org/10.1007/s11738-003-0038-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0038-8

Key words

Navigation