Skip to main content
Log in

Fascia is the “sensor” for the coupling response of manipulative therapies

筋膜是手法治疗耦合应答的“传感器”

  • Critical Review
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Fascia, the initial response site for mechanical stimulation in manipulations, is also the target of the effect of manipulations. As the essence of manipulation is “force”, how mechanical stimuli are transduced into neuroelectric and biochemical signals in the fascia and how physical and chemical signals of the fascia initiate the mechanical stimulation effect are the common key questions in the study of the principle of manipulation. The physical changes in the fascial connective tissue caused by the manipulation, such as the deformation and displacement of the fascial tissue, can act on the nerve end receptors in the fascial layer and generate neural electrical signals; they can also activate the mechanoreceptors on the fascial cell membrane and convert mechanical signals into chemical signals via mechanosensitive ion channel transduction, triggering a physicochemical coupling response in the fascial microenvironment and producing mechanical stimulation through neuro-endocrine-immune system pathways. The “mechanical force of manipulation” in the fascia is transmitted through the meridian to facilitate the body’s perception and transmission of mechanical stimulation signals, indicating that the fascia is the “sensor” of coupled response to the physicochemical information of mechanical stimulation of manipulation.

摘要

筋膜作为手法力学刺激的初始应答部位, 也是手法的效应靶点。手法以“力”为本质特征, 其机械力学刺激 在筋膜如何转导为神经电信号和生物化学信号, 筋膜的理化信号如何启动力学刺激效应, 是手法作用原理研究中的 共性关键性问题。手法引起筋膜结缔组织物理变化, 如筋膜组织的形变位移等, 可作用于筋膜层神经末梢感受器, 产生神经电信号; 也可激活筋膜细胞膜上的力学感受器, 经机械敏感性离子通道转导将力学信号转化为化学信号, 触发筋膜微环境理化耦合应答, 通过神经-内分泌-免疫系统途径产生力学刺激效应。“手法机械力”在筋膜通过循经 感传, 促进机体感知并传递力学刺激信号, 表明筋膜是手法力学刺激物理化学信息耦合应答的“传感器”。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GRAHAM D. History of massage. Atlanta Med Surg J, 1879, 17(7): 426–434.

    PubMed  PubMed Central  Google Scholar 

  2. CHEN P C, WEI L, HUANG C Y, CHANG F H, LIN Y N. The effect of massage force on relieving nonspecific low back pain: a randomized controlled trial. Int J Environ Res Public Health, 2022, 19(20): 13191.

    Article  PubMed  PubMed Central  Google Scholar 

  3. KALICHMAN L, BEN DAVID C. Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: a narrative review. J Bodyw Mov Ther, 2017, 21(2): 446–451.

    Article  PubMed  Google Scholar 

  4. MENSE S, HOHEISEL U. Evidence for the existence of nociceptors in rat thoracolumbar fascia. J Bodyw Mov Ther, 2016, 20(3): 623–628.

    Article  PubMed  Google Scholar 

  5. KASSOLIK K, JASKÓLSKA A, KISIEL-SAJEWICZ K, MARUSIAK J, KAWCZYŃSKI A, JASKÓLSKI A. Tensegrity principle in massage demonstrated by electro- and mechanomyography. J Bodyw Mov Ther, 2009, 13(2): 164–170.

    Article  PubMed  Google Scholar 

  6. LIMA C R, MARTINS D F, REED W R. Physiological responses induced by manual therapy in animal models: a scoping review. Front Neurosci, 2020, 14: 430.

    Article  PubMed  PubMed Central  Google Scholar 

  7. BUSCEMI A, MARTINO S, SCIRÈ CAMPISI S, RAPISARDA A, COCO M. Endocannabinoids release after osteopathic manipulative treatment. A brief review. J Complement Integr Med, 2020, 18(1): 1–7.

    Article  PubMed  Google Scholar 

  8. HUIJING P A. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech, 1999, 32(4): 329–345.

    Article  PubMed  CAS  Google Scholar 

  9. TAGUCHI T, YASUI M, KUBO A, ABE M, KIYAMA H, YAMANAKA A, MIZUMURA K. Nociception originating from the crural fascia in rats. Pain, 2013, 154(7): 1103–1114.

    Article  PubMed  CAS  Google Scholar 

  10. TOZZI P. Does fascia hold memories? J Bodyw Mov Ther, 2014, 18(2): 259–265.

    Article  PubMed  Google Scholar 

  11. ERCOLE B, ANTONIO S, JULIE ANN D, STECCO C. How much time is required to modify a fascial fibrosis? J Bodyw Mov Ther, 2010, 14(4): 318–325.

    Article  PubMed  Google Scholar 

  12. PAVAN P G, STECCO A, STERN R, STECCO C. Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Rep, 2014, 18(8): 441.

    Article  PubMed  Google Scholar 

  13. SANJANA F, CHAUDHRY H, FINDLEY T. Effect of MELT method on thoracolumbar connective tissue: the full study. J Bodyw Mov Ther, 2017, 21(1): 179–185.

    Article  PubMed  Google Scholar 

  14. CHAUDHRY H, BUKIET B, JI Z, STECCO A, FINDLEY T W. Deformations experienced in the human skin, adipose tissue, and fascia in osteopathic manipulative medicine. J Am Osteopath Assoc, 2014, 114(10): 780–787.

    PubMed  Google Scholar 

  15. DE SOUZA BEZERRA E, LUNARDI M, SAKUGAWA R L, DIEFENTHAELER F. Acute effects of myofascial release with portable electric massager at different frequencies: a randomized pilot study. J Bodyw Mov Ther, 2021, 28: 225–230.

    Article  PubMed  Google Scholar 

  16. ZHENG Y Y. The application of point, line, and surface in massage therapy. Zhejiang Zhongyi Zazhi, 2022, 57(12): 905–906.

    Google Scholar 

  17. CHENG L L, LI D J, YU Y Y, CHEN Z H. Manipulation treatment of knee osteoarthritis based on the theory of myofascial chain. Anhui Zhongyiyao Daxue Xuebao, 2022, 41(5): 8–11.

    Google Scholar 

  18. ANLOAGUE A, MAHONEY A, OGUNBEKUN O, HILAND T A, THOMPSON W R, LARSEN B, LOGHMANI M T, HUM J M, LOWERY J W. Mechanical stimulation of human dermal fibroblasts regulates proinflammatory cytokines: potential insight into soft tissue manual therapies. BMC Res Notes, 2020, 13(1): 400.

    Article  PubMed  PubMed Central  Google Scholar 

  19. BORDONI B, LINTONBON D, MORABITO B. Meaning of the solid and liquid fascia to reconsider the model of biotensegrity. Cureus, 2018, 10(7): e2922.

    PubMed  PubMed Central  Google Scholar 

  20. CHAITOW L. Dosage and manual therapies: can we translate science into practice? J Bodyw Mov Ther, 2016, 20(2): 217–218.

    Article  PubMed  Google Scholar 

  21. STECCO A, MACCHI V, MASIERO S, PORZIONATO A, TIENGO C, STECCO C, DELMAS V, DE CARO R. Pectoral and femoral fasciae: common aspects and regional specializations. Surg Radiol Anat, 2009, 31(1): 35–42.

    Article  PubMed  CAS  Google Scholar 

  22. FIDUT-WROŃSKA J, CHOŁUJ K, CHMIEL J, PIKTO-PITKIEWICZ K, MAJCHER P. Observation using thermography of post-operative reaction after fascial manipulation®. Ann Agric Environ Med, 2019, 26(3): 468–471.

    Article  PubMed  Google Scholar 

  23. GRINNELL F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol, 2003, 13(5): 264–269.

    Article  PubMed  CAS  Google Scholar 

  24. FEDE C, ALBERTIN G, PETRELLI L, SFRISO M M, BIZ C, DE CARO R, STECCO C. Hormone receptor expression in human fascial tissue. Eur J Histochem, 2016, 60(4): 2710.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. KUNIKATA H, WATANABE K, MIYOSHI M, TANIOKA T. The effects measurement of hand massage by the autonomic activity and psychological indicators. J Med Invest, 2012, 59(1–2): 206–212.

    Article  PubMed  Google Scholar 

  26. KIM T H, PARK S K, CHO I Y, LEE J H, JANG H Y, YOON Y S. Substantiating the therapeutic effects of simultaneous heat massage combined with conventional physical therapy for treatment of lower back pain: a randomized controlled feasibility trial. Healthcare (Basel), 2023, 11(7): 991.

    Article  PubMed  Google Scholar 

  27. GRINNELL F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol, 2000, 10(9): 362–365.

    Article  PubMed  CAS  Google Scholar 

  28. WEERAPONG P, HUME P A, KOLT G S. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med, 2005, 35(3): 235–256.

    Article  PubMed  Google Scholar 

  29. HOLEY L A, DIXON J. Connective tissue manipulation: a review of theory and clinical evidence. J Bodyw Mov Ther, 2014, 18(1): 112–118.

    Article  PubMed  Google Scholar 

  30. STECCO C, MACCHI V, PORZIONATO A, DUPARC F, DE CARO R. The fascia: the forgotten structure. Ital J Anat Embryol, 2011, 116(3): 127–138.

    PubMed  Google Scholar 

  31. STECCO A, MASIERO S, MACCHI V, STECCO C, PORZIONATO A, DE CARO R. The pectoral fascia: anatomical and histological study. J Bodyw Mov Ther, 2009, 13(3): 255–261.

    Article  PubMed  Google Scholar 

  32. HUGHES E, KOENIG J, LEE R, MCDERMOTT K, FREILICHER T, PITCHER M. Pilot study assessing the effect of fascial manipulation on fascial densifications and associated pain. Eur J Transl Myol, 2022, 32(1): 10369.

    Article  PubMed  PubMed Central  Google Scholar 

  33. LU Q W, SU C G, LIU H H, LUO C G, YAN B H. Effect of constant compressive stress induced by imitating Tuina stimulation with various durations on the cell cycle, cellular secretion, apoptosis, and expression of myogenic differentiation and myogenic factor 5 of rat skeletal muscle cells in vitro. J Tradit Chin Med, 2020, 40(4): 550–561.

    PubMed  Google Scholar 

  34. FEDE C, ALBERTIN G, PETRELLI L, SFRISO M M, BIZ C, DE CARO R, STECCO C. Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem, 2016, 60(2): 2643.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. MCPARTLAND J M, GIUFFRIDA A, KING J, SKINNER E, SCOTTER J, MUSTY R E. Cannabimimetic effects of osteopathic manipulative treatment. J Am Osteopath Assoc, 2005, 105(6): 283–291.

    PubMed  Google Scholar 

  36. CHEN B, JIA Y, XIONG J Y, CHEN L, LUO M H, CHENG W Y, WANG Y L, LIU F, MA S B. Effect of pressure stresses on cell viability and protein expression of fascial fibroblast. Iran J Biotechnol, 2019, 17(1): e1863.

    Article  PubMed  PubMed Central  Google Scholar 

  37. ROBERTS G C, CRITCHLEY D R. Structural and biophysical properties of the integrin-associated cytoskeletal protein talin. Biophys Rev, 2009, 1(2): 61–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. BOPPART M D, MAHMASSANI Z S. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Physiol Cell Physiol, 2019, 317(4): C629–C641.

    Article  PubMed  PubMed Central  Google Scholar 

  39. ECKES B, ZWEERS M C, ZHANG Z G, HALLINGER R, MAUCH C, AUMAILLEY M, KRIEG T. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J Investig Dermatol Symp Proc, 2006, 11(1): 66–72.

    Article  PubMed  CAS  Google Scholar 

  40. TSCHUMPERLIN D J. Why stress matters: an introduction. Methods Mol Biol, 2021, 2299: 159–169.

    Article  PubMed  CAS  Google Scholar 

  41. CHIQUET M, RENEDO A S, HUBER F, FLÜCK M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol, 2003, 22(1): 73–80.

    Article  PubMed  CAS  Google Scholar 

  42. KÖNNIG D, HERRERA A, DUDA G N, PETERSEN A. Mechanosensation across borders: fibroblasts inside a macroporous scaffold sense and respond to the mechanical environment beyond the scaffold walls. J Tissue Eng Regen Med, 2018, 12(1): 265–275.

    Article  PubMed  Google Scholar 

  43. GROHMANN M, FOULSTONE E, WELSH G, HOLLY J, SHIELD J, CROWNE E, STEWART C. Isolation and validation of human prepubertal skeletal muscle cells: maturation and metabolic effects of IGF-I, IGFBP-3 and TNFα. J Physiol, 2005, 568(Pt 1): 229–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. CHEN B, LUO Y F, CUI J, FENG L M, YANG X F, FENG L. Comparative study on effects of static pressure stimulation on release of PGE2 and IL-6 in fibroblasts in the rat “Zusanli” and its adjacent areas. Zhongguo Zhen Jiu, 2007, 27(2): 135–140.

    PubMed  Google Scholar 

  45. CHEN Y, SHANG G D, FU G B. Effect of massage on hemodynamics parameters of uterine artery and serum prostaglandin in treating patients with primary dysmenorrhea. Zhongguo Zhongxiyi Jiehe Zazhi, 2011, 31(10): 1355–1358.

    PubMed  Google Scholar 

  46. WANG C, ZHU J C, XIONG Y Z, MA X F, ZHENG Z W, NIE Y, LI Y C, SU Y. Experimental study on improvement of blood supply timeliness of rabbits with vertebral artery type of cervical spondylosis by massage. Zhongguo Gu Shang, 2018, 31(8): 769–774.

    PubMed  ADS  Google Scholar 

  47. FONTEMAGGI G, GURTNER A, DAMALAS A, COSTANZO A, HIGASHI Y, SACCHI A, STRANO S, PIAGGIO G, BLANDINO G. DeltaEF1 repressor controls selectively p53 family members during differentiation. Oncogene, 2005, 24(49): 7273–7280.

    Article  PubMed  CAS  Google Scholar 

  48. LIPTAN G L. Fascia: a missing link in our understanding of the pathology of fibromyalgia. J Bodyw Mov Ther, 2010, 14(1): 3–12.

    Article  PubMed  Google Scholar 

  49. RODRÍGUEZ-HUGUET M, RODRÍGUEZ-ALMAGRO D, RODRÍGUEZ-HUGUET P, MARTÍN-VALERO R, LOMAS-VEGA R. Treatment of neck pain with myofascial therapies: a single blind randomized controlled trial. J Manipulative Physiol Ther, 2020, 43(2): 160–170.

    Article  PubMed  Google Scholar 

  50. SUNG P S, KANG Y M, PICKAR J G. Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: a preliminary report. Spine (Phila Pa 1976), 2005, 30(1): 115–122.

    Article  PubMed  Google Scholar 

  51. RAPAPORT M H, SCHETTLER P, BRESEE C. A preliminary study of the effects of repeated massage on hypothalamic-pituitary-adrenal and immune function in healthy individuals: a study of mechanisms of action and dosage. J Altern Complement Med, 2012, 18(8): 789–797.

    Article  PubMed  PubMed Central  Google Scholar 

  52. ISKRATSCH T, WOLFENSON H, SHEETZ M P. Appreciating force and shape: the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol, 2014, 15(12): 825–833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. JIN P, JAN L Y, JAN Y N. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu Rev Neurosci, 2020, 43: 207–229.

    Article  PubMed  CAS  Google Scholar 

  54. KEFAUVER J M, WARD A B, PATAPOUTIAN A. Discoveries in structure and physiology of mechanically activated ion channels. Nature, 2020, 587(7835): 567–576.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  55. SUAREZ-RODRIGUEZ V, FEDE C, PIRRI C, PETRELLI L, LORO-FERRER J F, RODRIGUEZ-RUIZ D, DE CARO R, STECCO C. Fascial innervation: a systematic review of the literature. Int J Mol Sci, 2022, 23(10): 5674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. SOMOGYI C S, MATTA C, FOLDVARI Z, JUHÁSZ T, KATONA É, TAKÁCS Á R, HAJDÚ T, DOBROSI N, GERGELY P, ZÁKÁNY R. Polymodal transient receptor potential vanilloid (TRPV) ion channels in chondrogenic cells. Int J Mol Sci, 2015, 16(8): 18412–18438.

    Article  PubMed  CAS  Google Scholar 

  57. MICKLE A D, SHEPHERD A J, MOHAPATRA D P. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci, 2015, 131: 73–118.

    Article  PubMed  PubMed Central  Google Scholar 

  58. SONG P F, SUN W Q, ZHANG H, FANG M, LIN Z G, WU Z W, ZHOU X, L Z Z, ZHU Q G, JIANG S C, CHENG Y B. Possible mechanism underlying analgesic effect of Tuina in rats may involve piezo mechanosensitive channels within dorsal root ganglia axon. J Tradit Chin Med, 2018, 38(6): 834–841.

    Article  PubMed  Google Scholar 

  59. NELSON N L, CHURILLA J R. Massage therapy for pain and function in patients with arthritis: a systematic review of randomized controlled trials. Am J Phys Med Rehabil, 2017, 96(9): 665–672.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Project of Natural Science Research in Anhui Province (安徽省高校自然科学研究项目重大项目, No. KJ2021ZD0062); TCM Health Science and TCM Rehabilitation Open Subject of Anhui University of Chinese Medicine (安徽中医药大学中医养生学及中医康复学学科开放课题, No. 2022ZJXK07); Key Project of Natural Science Research in Anhui Province (安徽省高校自然科学研究重点项目, No. 2023AH050725).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by CHENG Lulu, WANG Siyu, WU Qinggang, and CHEN Zhaohui. CHENG Lulu wrote the first draft. WANG Siyu and WANG Qinggang corrected the manuscript. CHEN Zhaohui supervised the conduct of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhaohui Chen  (陈朝晖).

Ethics declarations

The authors declare that there is no potential conflict of interest in this article.

Additional information

First Author: CHENG Lulu, M.D., lecturer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Wang, S., Wu, Q. et al. Fascia is the “sensor” for the coupling response of manipulative therapies. J. Acupunct. Tuina. Sci. 22, 81–90 (2024). https://doi.org/10.1007/s11726-024-1423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-024-1423-7

Keywords

关键词

中图分类号

文献标志码

Navigation