Skip to main content
Log in

Biologically inspired redistribution of a swarm of robots among multiple sites

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We present a biologically inspired approach to the dynamic assignment and reassignment of a homogeneous swarm of robots to multiple locations, which is relevant to applications like search and rescue, environmental monitoring, and task allocation. Our work is inspired by experimental studies of ant house hunting and empirical models that predict the behavior of the colony that is faced with a choice between multiple candidate nests. We design quorum based stochastic control policies that enable the team of agents to distribute themselves among multiple candidate sites in a specified ratio, and compare our results to the linear stochastic policies described in (Halasz et al., in Proceedings of the International Conference on Intelligent Robots and Systems (IROS’07), pp. 2320–2325, 2007). We show how our quorum model consistently performs better than the linear models while minimizing computational requirements and now it can be implemented without the use of inter-agent wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In Proceedings of the first international joint conference on autonomous agents and multi-agent systems (AAMAS’02) (pp. 1090–1097). New York: ACM.

    Chapter  Google Scholar 

  • Ame, J., Halloy, J., Rivault, C., Detrain, C., & Deneubourg, J.-L. (2006). Collegial decision making based on social amplification leads to optimal group formation. Proceedings of the National Academy of Sciences of the USA, 103(15), 5835–5840.

    Article  Google Scholar 

  • Berman, S., Halasz, A., Kumar, V., & Pratt, S. (2006). Algorithms for the analysis and synthesis of a bio-inspired swarm robotic system. In Lecture notes in computer science: Vol. 4433. Swarm robotics (pp. 56–70). Berlin: Springer.

    Chapter  Google Scholar 

  • Berman, S., Halasz, A., Kumar, V., & Pratt, S. (2007). Bio-inspired group behaviors for the deployment of a swarm of robots to multiple destinations. In Proceedings of the 2007 IEEE international conference on robotics and automation (ICRA’07) (pp. 2318–2323). Los Alamitos: IEEE.

    Chapter  Google Scholar 

  • Berman, S., Halasz, A., Hsieh, M. A., & Kumar, V. (2008). Navigation-based optimization of stochastic deployment strategies for a robot swarm to multiple sites. In 47th IEEE conference on decision and control. Los Alamitos: IEEE.

    Google Scholar 

  • Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1997). Adaptive task allocation inspired by a model of division of labor in social insects. In D. Lundh, B. Olsson, & A. Narayanan (Eds.), Biocomputing and emergent computation (pp. 36–45). Singapore: World Scientific.

    Google Scholar 

  • Britton, N. F., Franks, N. R., Pratt, S. C., & Seeley, T. D. (2002). Deciding on a new home: how do honeybees agree? Proceedings of the Royal Society B: Biological Sciences, 269(1498), 1383–1388.

    Article  Google Scholar 

  • Dahl, T. S., Mataric̀, M. J., & Sukhatme, G. S. (2006). A machine learning method for improving task allocation in distributed multi-robot transportation. In D. Braha, A. Minai, & Y. Bar-Yam (Eds.), Understanding complex systems: science meets technology (pp. 307–337). Berlin: Springer.

    Google Scholar 

  • Dias, M. B. (2004). TraderBots: a new paradigm for robust and efficient multirobot coordination in dynamic environments. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

  • Dias, M. B., Zlot, R. M., Kalra, N., & Stentz, A. T. (2006). Market-based multirobot coordination: a survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.

    Article  Google Scholar 

  • Franks, N., Pratt, S. C., Britton, N. F., Mallon, E. B., & Sumpter, D. T. (2002). Information flow, opinion-polling and collective intelligence in house-hunting social insects. Philosophical Transactions B: Biological Sciences, 357(1429), 1567–1584.

    Article  Google Scholar 

  • Gerkey, B. P., & Mataric, M. J. (2002). Sold!: Auction methods for multi-robot control. IEEE Transactions on Robotics & Automation, 18(5), 758–768.

    Article  Google Scholar 

  • Gillespie, D. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D. (2007). Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 58, 35–55.

    Article  Google Scholar 

  • Golfarelli, M., Maio, D., & Rizzi, S. (1997). Multi-agent path planning based on task-swap negotiation. In Proceedings of the 16th UK planning and scheduling SIG workshop. Durham: PlanSIG.

    Google Scholar 

  • Guerrero, J., & Oliver, G. (2003). Multi-robot task allocation strategies using auction-like mechanisms. In Artificial research and development, frontiers in artificial intelligence and applications (Vol. 100, pp. 111–122). Amsterdam: IOS.

    Google Scholar 

  • Halasz, A., Hsieh, M. A., Berman, S., & Kumar, V. (2007). Dynamic redistribution of a swarm of robots among multiple sites. In Proceedings of the conference on intelligent robot systems (IROS’07) (pp. 2320–2325). Los Alamitos: IEEE.

    Chapter  Google Scholar 

  • Jones, E. G., Browning, B., Dias, M. B., Argall, B., Veloso, M., & Stentz, A. T. (2006). Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks. In Proceedings of the 2006 IEEE international conference on robotics and automation (ICRA’06) (pp. 570–575). Los Alamitos: IEEE.

    Chapter  Google Scholar 

  • Jones, E. G., Dias, M. B., & Stentz, A. (2007). Learning-enhanced market-based task allocation for oversubscribed domains. In Proceedings of the conference on intelligent robot systems (IROS’07) (pp. 2308–2313). Los Alamitos: IEEE.

    Chapter  Google Scholar 

  • Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allocation. In M. Gini & R. Voyles (Eds.), Distributed autonomous robotic systems 7 (pp. 91–102). Minneapolis/St. Paul: Springer.

    Chapter  Google Scholar 

  • Krieger, M. J. B., Billeter, J.-B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406, 992–995.

    Article  Google Scholar 

  • Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(1), 4–25.

    Article  Google Scholar 

  • Landau, D. P., & Binder, K. (2000). A guide to Monte-Carlo simulations in statistical physics. London: Cambridge University Press.

    MATH  Google Scholar 

  • Lerman, K., Jones, C. V., Galstyan, A., & Mataric, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Research, 25(4), 225–242.

    Google Scholar 

  • Lin, L., & Zheng, Z. (2005). Combinatorial bids based multi-robot task allocation method. In Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA’05) (pp. 1145–1150). Los Alamitos: IEEE.

    Chapter  Google Scholar 

  • MacDonald, N. (1978). Lecture notes in biomathematics : Vol. 27. Time-lags in biological models. Berlin: Springer.

    MATH  Google Scholar 

  • Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling of swarm robotic systems: a case study in collaborative distributed manipulation. International Journal of Robotics Research: Special Issue on Experimental Robotics, 23(4–5), 415–436.

    Google Scholar 

  • Milutinovic, D., & Lima, P. (2006). Modeling and optimal centralized control of a large-size robotic population. IEEE Transactions on Robotics, 22(6), 1280–1285.

    Article  Google Scholar 

  • Pacala, S. W., Gordon, D. M., & Godfray, H. C. J. (1996). Effects of social group size on information transfer and task allocation. Evolutionary Ecology, 10(2), 127–165.

    Article  Google Scholar 

  • Pratt, S. C. (2005). Quorum sensing by encounter rates in the ant temnothorax albipennis. Behavioral Ecology, 16(2), 488–496.

    Article  Google Scholar 

  • Pratt, S., Mallon, E. B., Sumpter, D. J. T., & Franks, N. R. (2002). Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant leptothorax albipennis. Behavioral Ecology and Sociobiology, 52, 117–127.

    Article  Google Scholar 

  • Shen, W.-M., & Salemi, B. (2002). Towards distributed and dynamic task reallocation. In M. Gini, W.-M. Shen, C. Torras, & H. Yuasa (Eds.), Intelligent autonomous systems 7 (pp. 570–575). Marina del Rey: IOS.

    Google Scholar 

  • Vail, D., & Veloso, M. (2003). Multi-robot dynamic role assignment and coordination through shared potential fields. In A. Schultz, L. Parker, & F. Schneider (Eds.), Multi-robot systems (pp. 87–98). Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ani Hsieh.

Additional information

We gratefully acknowledge the support of NSF grants CCR02-05336 and IIS-0427313, and ARO Grants W911NF-05-1-0219 and W911NF-04-1-0148.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, M.A., Halász, Á., Berman, S. et al. Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intell 2, 121–141 (2008). https://doi.org/10.1007/s11721-008-0019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-008-0019-z

Keywords

Navigation