Skip to main content
Log in

Studies of fiber-matrix debonding

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, the debonding of a single fiber-matrix system of carbon fiber reinforced composite (CFRP) AS4/Epson 828 material is studied using Cohesive Zone Model (CZM). The effect of parameters namely, maximum tangential contact stress, tangential slip distance and artificial damping coefficient on the debonding length at the interface of the fiber-matrix is analyzed. Contact elements used in the CZM are coupled based on a bilinear stress-strain curve. Load is applied on the matrix, tangential to the interface. Hence, debonding is observed primarily in Mode II.Wide range of values are considered to study the inter-dependency of the parameters and its effect on debonding length. Out of the three parameters mentioned, artificial damping coefficient and tangential slip distance significantly affect debonding length. A thorough investigation is recommended for case wise interface debonding analysis, to estimate the optimal parametric values while using CZM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pattabhi Ramaiah B, Rammohan B, Vijay Kumar S, Satish Babu D, Raghuatnhan R. Aero-elastic analysis of stiffened composite wing structure. Advances in Vibration Engineering, 2009, 8(3): 255–264

    Google Scholar 

  2. Sudhir Sastry Y B, Budarapu P R, Madhavi N, Krishna Y. Buckling analysis of thin wall stiffened composite panels. Computational Materials Science, 2015, 96(B): 459–471

    Article  Google Scholar 

  3. Frolov V A. Strength of a composite material for structural applications. Mechanics of Composite Materials, 1987, 23(2): 148–154

    Article  Google Scholar 

  4. Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12

    Article  Google Scholar 

  5. BP O’Rourke. The uses of composite materials in the design and manufacture of formula 1 racing cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1990, 204: 41–48

    Google Scholar 

  6. Parga-Landa B, Hernández-Olivares F. Analytical model to predict behaviour of soft armours. International Journal of Impact Engineering, 1995, 16(3): 455–466

    Article  Google Scholar 

  7. Anderson C E Jr, Bodner S R. Ballistic impact: The status of analytical and material modeling. International Journal of Impact Engineering, 1988, 7(1): 9–35

    Article  Google Scholar 

  8. Naik N K, Shrirao P. Composite structures under ballistic impact. Composite Structures, 2004, 66(1-4): 579–590

    Article  Google Scholar 

  9. James C. Leslie, The use of composite material increase the availability of oil and gas and reduce the cost of drilling and production operations. Proc. SPIE 6531, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, 65310E, 2007

    Google Scholar 

  10. Anderson C E Jr, Bodner S R. Ballistic impact: The status of analytical and material modeling. International Journal of Impact Engineering, 1988, 7(1): 9–35

    Article  Google Scholar 

  11. Naik N K, Shrirao P. Composite structures under ballistic impact. Composite Structures, 2004, 66(1–4): 579–590

    Article  Google Scholar 

  12. Katz S, Grossman E, Gouzman I, Murat M, Wiesel E, Wagner H D. Response of composite materials to hypervelocity impact. International Journal of Impact Engineering, 2008, 35(12): 1606–1611

    Article  Google Scholar 

  13. Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128–140

    Article  Google Scholar 

  14. Scoutis C. Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering: A, 2005, 412(1–2): 171–176

    Article  Google Scholar 

  15. Paipetis A S. Room vs. temperature studies of model composites: Modes of failure of carbon fibre/epoxy interfaces. Composite Interfaces, 2012, 19(2): 135–158

    Google Scholar 

  16. Xu Z, Li J, Wu X, Huang Y, Chen L, Zhang G. Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface. Composites. Part A, Applied Science and Manufacturing, 2008, 39(2): 301–307

    Article  Google Scholar 

  17. Zhao J, Ho K K C, Shamsuddin S R, Bismarck A, Dutschk V. A comparative study of fibre/matrix interface in glass fibre reinforced polyvinylidene fluoride composites. Colloids Surfaces A Physicochem, Eng Asp, 2012, 413: 58–64

    Article  Google Scholar 

  18. Nath R B, Fenner D N, Galiotis C. Progressional approach to interfacial failure in carbon reinforced composites: Elasto-plastic finite element modelling of interface cracks. Composites. Part A, Applied Science and Manufacturing, 2000, 31(9): 929–943

    Article  Google Scholar 

  19. Kim B W, Nairn J A. Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites. Journal of Composite Materials, 2002, 36(15): 1825–1858

    Article  Google Scholar 

  20. Ho H, Drzal L T. Non-linear numerical study of the single-fiber fragmentation test Part I: Test mechanics. Composites Engineering, 1995, 5(10–11): 1231–1244

    Article  Google Scholar 

  21. Yang S W, Budarapu P R, Roy Mahapatra D, Bordas S, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96(B): 382–395

    Article  Google Scholar 

  22. Budarapu P R, Gracie R, Yang SW, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modelling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  23. Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Article  MATH  Google Scholar 

  24. Sudhir Sastry Y B, Krishna Y, Budarapu P R. Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 2015, 96(B): 416–424

    Article  Google Scholar 

  25. Budarapu P R, Yb S S, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151–159

    Article  Google Scholar 

  26. Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17–20): 1645–1669

    Article  MATH  MathSciNet  Google Scholar 

  27. Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6–8): 641–658

    Article  MATH  MathSciNet  Google Scholar 

  28. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid–structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

    MATH  MathSciNet  Google Scholar 

  29. Robert G, Belytschko T. Concurrently coupled atomistic and XFEM models for dislocations and cracks. International Journal for Numerical Methods in Engineering, 2008, 78: 354–378

    Google Scholar 

  30. Rabczuk T, Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

    Article  MATH  Google Scholar 

  31. Rabczuk T, Bordas S P, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

    Article  MATH  Google Scholar 

  32. Bordas S P, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960

    Article  Google Scholar 

  33. Gracie R, Belytschko T. Adaptive continuum-atomistic simulations of dislocation dynamics. International Journal for Numerical Methods in Engineering, 2011, 86(4–5): 575–597

    Article  MATH  Google Scholar 

  34. Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

    Article  MATH  MathSciNet  Google Scholar 

  35. Rabczuk T, Areias P M A, Belytschko T. A simplified meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021

    Article  MATH  MathSciNet  Google Scholar 

  36. Rabczuk T, Song J H, Belytschko T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741

    Article  Google Scholar 

  37. Rabczuk T, Zi G, Bordas S P, Nguyen-Xuan H. A simple and robust threedimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

    Article  MATH  Google Scholar 

  38. Turon A, Camanho P P, Costa J, Dávila C G. A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 2006, 38(11): 1072–1089

    Article  Google Scholar 

  39. Irwin G R. Fracture. Handbuch der Physik. Flugge S, ed. Berlin: Springer, 1958, VI: 551–590

  40. Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 1977, 9(4): 931–938

    Article  Google Scholar 

  41. Shivakumar K N. Tan,PW. Newman, JC. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. International Journal of Fracture, 1988, 36: R43–R50

    Google Scholar 

  42. Krueger R. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 2004, 57(2): 109–143

    Article  MathSciNet  Google Scholar 

  43. Raju I S. Calculation of strain-energy release rates with higher order and singular finite elements. Engineering Fracture Mechanics, 1987, 28(3): 251–274

    Article  Google Scholar 

  44. Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968, 35(2): 379–386

    Article  MathSciNet  Google Scholar 

  45. Hellen T K. On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering, 1975, 9(1): 187–207

    Article  MATH  MathSciNet  Google Scholar 

  46. Parks D M. A stiffness derivative finite element technique of crack tip stress intensity factors. International Journal of Fracture, 1974, 10(4): 487–502

    Article  MathSciNet  Google Scholar 

  47. Griffith A A. The phenomenon of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1921, 221(582–593): 163–198

    Article  Google Scholar 

  48. Turon A, Costa J, Camanho P P, Davila, C G. Simulation of delamination propagation in composites under high-cycle fatigue by means of cohesive-zone models, NASA/TM 214532 1–28, 2006

    Google Scholar 

  49. Turon A, Camanho P P, Costa J, Dávila C G. Mechanics of Materials, 2006, 38: 1072–1089

    Article  Google Scholar 

  50. Turon A, Costa J, Camanho P P, Dávila C G. Composites. Part A, Applied science and manufacturing, 2008, 38: 2270–2282

    Article  Google Scholar 

  51. Kumar S, Singh I V, Mishra B K. A homogenized XFEM approach to simulate fatigue crack growth problems. Computers & Structures, 2015, 150: 1–22

    Article  Google Scholar 

  52. Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466

    Article  MathSciNet  Google Scholar 

  53. Kumar S, Singh I V, Mishra B K. A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials. Theoretical and Applied Fracture Mechanics, 2014, 72: 121–135

    Article  Google Scholar 

  54. Agarwal A, Singh I V, Mishra B K. Numerical prediction of elastoplastic behaviour of interpenetrating phase composites by EFGM. Composites. Part B, Engineering, 2013, 51: 327–336

    Article  Google Scholar 

  55. Bhardwaj G, Singh I V, Mishra B K, Bui T Q. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Composite Structures, 2015, 126: 347–359

    Article  Google Scholar 

  56. Bhardwaj G, Singh I V, Mishra B K. Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 186–229

    Article  MathSciNet  Google Scholar 

  57. Dugdale D S. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104

    Article  Google Scholar 

  58. Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7(C): 55–129

    Article  MathSciNet  Google Scholar 

  59. Bažant Z P, Jirásek M. Nonlocal integral formulations of plasticity and damage: Survey of progress. Journal of Engineering Mechanics, 2002, 128(11): 1119–1149

    Article  Google Scholar 

  60. Alfano G, Crisfield M A. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering, 2001, 50(7): 1701–1736

    Article  MATH  Google Scholar 

  61. Fujimoto T, Kagami J, Kawaguchi T, Hatazawa T. Microdisplacement characteristics under tangential force. Wear, 2000, 241(2): 136–142

    Article  Google Scholar 

  62. Grzemba B, Pohrt R, Teidelt E, Popov V L. Maximum micro-slip in tangential contact of randomly rough self-affine surfaces. Wear, 2014, 309(1–2): 256–258

    Article  Google Scholar 

  63. Design M, Section C S, Technical N, Introduction I. An artificial damping method for the harmonically excited non-linear systems. 1988, 120: 597–608

    Google Scholar 

  64. Kim S. Artificial damping in multigrid methods. Applied Mathematics Letters, 2001, 14(3): 359–364

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hildebrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dronamraju, N., Solass, J. & Hildebrand, J. Studies of fiber-matrix debonding. Front. Struct. Civ. Eng. 9, 448–456 (2015). https://doi.org/10.1007/s11709-015-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0316-8

Keywords

Navigation