Skip to main content
Log in

Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5% macroscopic deformation) is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanguy B. Modélisation de l’essai Charpy par l’approche locale de la rupture — application au cas de l’acier 16MND5 dans le domaine de la transition. Ph.D thesis, École des Mines Paris Tech, 2001

    Google Scholar 

  2. Beremin F, Pineau A, Mudry F, Devaux J C, D’Escatha Y, Ledermann P. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions, 1983, 14A(11): 2277–2287

    Article  Google Scholar 

  3. Mathieu J, Berveiller S, Inal K, Diard O. Microscale modelling of cleavage fracture at low temperatures: influence of heterogeneities at the granular scale. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(9–10): 725–737

    Article  Google Scholar 

  4. Mathieu J, Inal K, Berveiller S, Diard O. A micromechanical interpretation of the temperature dependence of Beremin model parameters for French RPV steel. Journal of Nuclear Materials, 2010, 406(1): 97–112

    Article  Google Scholar 

  5. Graham-Brady L, Arwade S, Corr D, Gutiérrez M, Breysse D, Grigoriu M, Zabaras N. Probability and materials: from nano- to macro-scale — a summary. Probabilistic Engineering Mechanics, 2006, 21(3): 193–199

    Article  Google Scholar 

  6. Stefanou G. The stochastic finite element method: past, present and future. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9–12): 1031–1051

    Article  MATH  Google Scholar 

  7. Xu X F, Chen X. Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element. Mechanics of Materials, 2009, 41(2): 174–186

    Article  Google Scholar 

  8. Graham L, Baxter S. Simulation of local material properties based on moving-window GMC. Probabilistic Engineering Mechanics, 2001, 16(4): 295–305

    Article  Google Scholar 

  9. Liu H, Arwade S, Igusa T. Random composites characterization using a classifier model. Journal of Engineering Mechanics, 2007, 133(2): 129–140

    Article  Google Scholar 

  10. Chung D B, Gutiérrez M A, Borst R. Object-oriented stochastic finite element analysis of fibre metal laminates. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12–16): 1427–1446

    Article  MATH  Google Scholar 

  11. Chakraborty A, Rahman S. Stochastic multiscale models for fracture analysis of functionally graded materials. Engineering Fracture Mechanics, 2008, 75(8): 2062–2086

    Article  Google Scholar 

  12. Arwade S, Grigoriu M. Probabilistic model for polycrystalline microstructures with application to intergranular fracture. Journal of Engineering Mechanics, 2004, 130(9): 997–1005

    Article  Google Scholar 

  13. Grigoriu M. Nearest neighbor probabilistic model for aluminum polycrystals. Journal of Engineering Mechanics, 2010, 136(7): 821–829

    Article  Google Scholar 

  14. Li Z, Wen B, Zabaras N. Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques. Computational Materials Science, 2010, 49(3): 568–581

    Article  Google Scholar 

  15. Kouchmeshky B, Zabaras N. Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Computational Materials Science, 2010, 48(2): 213–227

    Article  Google Scholar 

  16. Kouchmeshky B, Zabaras N. The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals. Computational Materials Science, 2009, 47(2): 342–352

    Article  Google Scholar 

  17. Dang H X, Sudret B, Berveiller B. Benchmark of random fields simulation methods and links with identification methods. In: Faber M, Köhler J, Nishijima K. eds. Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP11), Zurich, Switzerland, 2011

    Google Scholar 

  18. Stoica P, Moses R. Introduction to spectral analysis. Prentice Hall, 1997

    MATH  Google Scholar 

  19. Li J. Spectral estimation. Dep. of Electrical and Computer Engineering - University of Florida, 2005

    Google Scholar 

  20. Cramer H, Leadbetter M. Stationary and Related Processes. Wiley & Sons, 1967

    MATH  Google Scholar 

  21. Vanmarcke E. Random Fields: Analysis and Synthesis. Cambridge, Massachussets: The MIT Press, 1983

    MATH  Google Scholar 

  22. Preumont A. Vibrations aléatoires et analyse spectrale. Presses polytechniques et universitaires romandes, 1990

    Google Scholar 

  23. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431–441

    Article  MATH  MathSciNet  Google Scholar 

  24. Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metallurgica, 1985, 33(9): 1601–1612

    Article  Google Scholar 

  25. Meric L, Cailletaud G. Single crystal modelling for structural calculation: Part 2- F.E. Implementation. Journal of Engineering Materials and Technology, 1991, 113(1): 171–182

    Article  Google Scholar 

  26. Mathieu J. Analyse et modélisation micromécanique du comportement et de la rupture fragile de l’acier 16MND5: prise en compte des hétérogénéités microstructurales. Ph.D thesis, École Nationale Supérieure des Arts et Métiers, 2006

    Google Scholar 

  27. Gilbert E. Random subdivisions of space into crystals. Annals of Mathematical Statistics, 1962, 33(3): 958–972

    Article  MATH  MathSciNet  Google Scholar 

  28. Barber C, Dobkin D, Huhdanpaa H. The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 1996, 22(4): 469–483

    Article  MATH  MathSciNet  Google Scholar 

  29. Lautensack C, Zuyev S. Random Laguerre tessellations. Advances in Applied Probability, 2008, 40(3): 630–650

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang P, Balint D, Lin J. Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation. Philosophical Magazine, 2011, 91(36): 4555–4573

    Article  Google Scholar 

  31. Leonardia A, Scardia P, Leonia M. Realistic nano-polycrystalline microstructures: beyond the classical Voronoi tessellation. Philosophical Magazine, 2012, 92(8): 986–1005

    Article  Google Scholar 

  32. Laug P, Borouchaki H. BLSURF-mesh generator for composite parametric surface. Tech. Rep. 0235, INRIA, User’s Manual, 1999

    Google Scholar 

  33. Perrin G, Soize C, Duhamel D, Funfschilling C. A posteriori error and optimal reduced basis for stochastic processes defined by a finite set of realizations. SIAM/ASA J. Uncertainty Quantification, 2014, 2(1): 745–762

    Article  MATH  MathSciNet  Google Scholar 

  34. Dang H, Sudret B, Berveiller M, Zeghadi A. Identification of random stress fields from the simulation of polycrystalline aggregates. In: Proceedings of the 1st International Conference Computational Modeling of Fracture and Failure of Materials and Structures (CFRAC). Barcelona, Spain, 2011

    Google Scholar 

  35. Dang H X, Berveiller M, Zeghadi A, Sudret B, Yalamas T. Introducing stress random fields of polycrystalline aggregates into the local approach to fracture. In: Deodatis G. ed. Proceedings of the 11th International Conference Structural Safety and Reliability (ICOSSAR’2013). New York, USA, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sudret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudret, B., Dang, H.X., Berveiller, M. et al. Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements. Front. Struct. Civ. Eng. 9, 121–140 (2015). https://doi.org/10.1007/s11709-015-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0290-1

Keywords

Navigation