Skip to main content
Log in

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews. Materials, 2016, 1(4): 16013

    Article  Google Scholar 

  2. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12(3): 194–206

    Article  Google Scholar 

  3. Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 2018, 3(1): 16–21

    Article  Google Scholar 

  4. Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chemical Reviews, 2017, 117(15): 10403–10473

    Article  Google Scholar 

  5. Evarts E C. Lithium batteries: to the limits of lithium. Nature, 2015, 526(7575): S93–S95

    Article  Google Scholar 

  6. Yang C, Fu K, Zhang Y, et al. Protected lithium-metal anodes in batteries: from liquid to solid. Advanced Materials, 2017, 29(36): 1701169

    Article  Google Scholar 

  7. Wang S H, Yue J, Dong W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10(1): 4930

    Article  Google Scholar 

  8. Wang Z, Wang Y, Zhang Z, et al. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Advanced Functional Materials, 2020, 30(30): 2002414

    Article  Google Scholar 

  9. Dornbusch D A, Hilton R, Lohman S D, et al. Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. Journal of the Electrochemical Society, 2015, 162(3): A262–A268

    Article  Google Scholar 

  10. Palacín M R, De Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292

    Article  Google Scholar 

  11. Fan P, Liu H, Marosz V, et al. High performance composite polymer electrolytes for lithium-ion batteries. Advanced Functional Materials, 2021, 31(23): 2101380

    Article  Google Scholar 

  12. Samson A J, Hofstetter K, Bag S, et al. A bird’s-eye view of Listuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science, 2019, 12(10): 2957–2975

    Article  Google Scholar 

  13. Xu H, Cao G, Shen Y, et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy & Environmental Materials, 2022, online

  14. Vinod Chandran C, Pristat S, Witt E, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2−x(PO4)3 (0.0 ⩽ x ⩽ S 1.0). Journal of Physical Chemistry C, 2016, 120(16): 8436–8442

    Article  Google Scholar 

  15. Wang J, Wang M, Xiao J, et al. A microstructure engineered perovskite super anode with Li-storage life of exceeding 10000 cycles. Nano Energy, 2022, 94: 106972

    Article  Google Scholar 

  16. Mauger A, Julien C M, Paolella A, et al. Building better batteries in the solid state: a review. Materials (Basel), 2019, 12(23): 3892

    Article  Google Scholar 

  17. Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5: 139–164

    Article  Google Scholar 

  18. Zhang Q, Liu K, Ding F, et al. Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017, 10(12): 4139–4174

    Article  Google Scholar 

  19. Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal-OH group? Energy & Environmental Science, 2020, 13(5): 1318–1325

    Article  Google Scholar 

  20. Xu L, Li J, Shuai H, et al. Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67: 524–548

    Article  Google Scholar 

  21. Chen L, Li Y, Li S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46: 176–184

    Article  Google Scholar 

  22. Zheng J, Hu Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Applied Materials & Interfaces, 2018, 10(4): 4113–4120

    Article  Google Scholar 

  23. Huang Z, Tong R A, Zhang J, et al. Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. Journal of Power Sources, 2020, 451: 227797

    Article  Google Scholar 

  24. Jiang T, He P, Liang Y, et al. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal, 2021, 421: 129965

    Article  Google Scholar 

  25. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 2005, 152(2): A396–A404

    Article  Google Scholar 

  26. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46(41): 7778–7781

    Article  Google Scholar 

  27. Rettenwander D, Blaha P, Laskowski R, et al. DFT study of the role of Al3+ in the fast ion-conductor Li7−3xAl3+xLa3Zr2O12 garnet. Chemistry of Materials, 2014, 26(8): 2617–2623

    Article  Google Scholar 

  28. Buannic L, Orayech B, López Del Amo J M, et al. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 2017, 29(4): 1769–1778

    Article  Google Scholar 

  29. Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069–11074

    Article  Google Scholar 

  30. Zhang X, Liu T, Zhang S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139(39): 13779–13785

    Article  Google Scholar 

  31. Li R, Wu D, Yu L, et al. Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Advanced Engineering Materials, 2019, 21(7): 1900055

    Article  Google Scholar 

  32. Sun F, Xiang Y, Sun Q, et al. Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Advanced Functional Materials, 2021, 31(31): 2102129

    Article  Google Scholar 

  33. Li Y, Wang H. Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021, 60(3): 1494–1500

    Article  Google Scholar 

  34. Wang W, Yi E, Fici A J, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. Journal of Physical Chemistry C, 2017, 121(5): 2563–2573

    Article  Google Scholar 

  35. Ma F, Zhang Z, Yan W, et al. Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4675–4683

    Article  Google Scholar 

  36. Jia M, Bi Z, Shi C, et al. Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(41): 46231–46238

    Article  Google Scholar 

  37. Xu H, Chien P H, Shi J, et al. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18815–18821

    Article  Google Scholar 

  38. Dai Z, Yu J, Liu J, et al. Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464: 228182

    Article  Google Scholar 

  39. Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. Journal of the Electrochemical Society, 2001, 148(7): A742–A746

    Article  Google Scholar 

  40. Deiseroth H J, Kong S T, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition, 2008, 47(4): 755–758

    Article  Google Scholar 

  41. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Materials, 2011, 10(9): 682–686

    Article  Google Scholar 

  42. Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016, 1(4): 16030

    Article  Google Scholar 

  43. Nikodimos Y, Huang C J, Taklu B W, et al. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science, 2022, 15(3): 991–1033

    Article  Google Scholar 

  44. Li Y, Arnold W, Thapa A, et al. Stable and flexible sulfide composite electrolytes for high-performance solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(38): 42653–42659

    Article  Google Scholar 

  45. Cong L, Li Y, Lu W, et al. Unlocking the poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solidstate electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. Journal of Power Sources, 2020, 446: 227365

    Article  Google Scholar 

  46. Pan K, Zhang L, Qian W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Advanced Materials, 2020, 32(17): 2000399

    Article  Google Scholar 

  47. Matsuo M, Nakamori Y, Orimo S I, et al. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Applied Physics Letters, 2007, 91(22): 224103

    Article  Google Scholar 

  48. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews. Materials, 2017, 2(4): 16103

    Article  Google Scholar 

  49. Cuan J, Zhou Y, Zhou T, et al. Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Advanced Materials, 2019, 31(1): 1803533

    Article  Google Scholar 

  50. Zhang X, Zhang T, Shao Y, et al. Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solidstate lithium-sulfur batteries. ACS Sustainable Chemistry & Engineering, 2021, 9(15): 5396–5404

    Article  Google Scholar 

  51. Bao K, Pang Y, Yang J, et al. Modulating composite polymer electrolyte by lithium closo-borohydride achieves highly stable solid-state battery at 25 °C. Science China Materials, 2022, 65(1): 95–104

    Article  Google Scholar 

  52. Hu C, Shen Y, Shen M, et al. Superionic conductors via bulk interfacial conduction. Journal of the American Chemical Society, 2020, 142(42): 18035–18041

    Article  Google Scholar 

  53. Fan R, Liu C, He K, et al. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Applied Materials & Interfaces, 2020, 12(6): 7222–7231

    Article  Google Scholar 

  54. Yang T, Zheng J, Cheng Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Applied Materials & Interfaces, 2017, 9(26): 21773–21780

    Article  Google Scholar 

  55. Li B, Su Q, Yu L, et al. Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Applied Materials & Interfaces, 2019, 11(45): 42206–42213

    Article  Google Scholar 

  56. Liu W, Lee S W, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature Energy, 2017, 2(5): 17035

    Article  Google Scholar 

  57. Song S, Wu Y, Tang W, et al. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7163–7170

    Article  Google Scholar 

  58. Cheng J, Hou G, Chen Q, et al. Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429: 132343

    Article  Google Scholar 

  59. Bae J, Li Y, Zhang J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angewandte Chemie International Edition, 2018, 57(8): 2096–2100

    Article  Google Scholar 

  60. Xu Z, Zhang H, Yang T, et al. Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2(11): 100644

    Article  Google Scholar 

  61. Wang X, Zhai H, Qie B, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy, 2019, 60: 205–212

    Article  Google Scholar 

  62. Song S, Qin X, Ruan Y, et al. Enhanced performance of solidstate lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. Journal of Power Sources, 2020, 461: 228146

    Article  Google Scholar 

  63. Zhang Y, He X, Chen Z, et al. Unsupervised discovery of solidstate lithium ion conductors. Nature Communications, 2019, 10(1): 5260

    Article  Google Scholar 

  64. Zekoll S, Marriner-Edwards C, Hekselman A K O, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 2018, 11(1): 185–201

    Article  Google Scholar 

  65. Yang H, Tay K, Xu Y, et al. Nitrogen-doped lithium lanthanum titanate nanofiber-polymer composite electrolytes for all-solidstate lithium batteries. Journal of the Electrochemical Society, 2021, 168(11): 110507

    Article  Google Scholar 

  66. Zhu P, Yan C, Dirican M, et al. Li0.33La0.557TiO3 erramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(10): 4279–4285

    Article  Google Scholar 

  67. Zhai H, Xu P, Ning M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Letters, 2017, 17(5): 3182–3187

    Article  Google Scholar 

  68. Chen W P, Duan H, Shi J L, et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. Journal of the American Chemical Society, 2021, 143(15): 5717–5726

    Article  Google Scholar 

  69. Huang Z, Pang W, Liang P, et al. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(27): 16425–16436

    Article  Google Scholar 

  70. Wang C, Yu R, Duan H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Letters, 2022, 7(1): 410–416

    Article  Google Scholar 

  71. Ahmed S A, Pareek T, Dwivedi S, et al. Fast Li+ conduction in (PEO+LiClO4) incorporated LiSn2(PO4)3 polymer-in-ceramic solid electrolyte. In: AIP Conference Proceedings, 2020, 2265: 030596

  72. Ahmed S A, Pareek T, Dwivedi S, et al. LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. Journal of Solid State Electrochemistry, 2020, 24(10): 2407–2417

    Article  Google Scholar 

  73. Zhang K, Mu S, Liu W, et al. A flexible NASICON-type composite electrolyte for lithium-oxygen/air battery. Ionics, 2019, 25(1): 25–33

    Article  Google Scholar 

  74. Jiang Z, Wang S, Chen X, et al. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Advanced Materials, 2020, 32(6): 1906221

    Article  Google Scholar 

  75. Yu S, Xu Q, Lu X, et al. Single-ion-conducting “poymer-in-ceramic” hybrid electrolyte with an intertwined NASICON-type nanofiber skeleton. ACS Applied Materials & Interfaces, 2021, 13(51): 61067–61077

    Article  Google Scholar 

  76. Meziane R, Bonnet J P, Courty M, et al. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochimica Acta, 2011, 57: 14–19

    Article  Google Scholar 

  77. Yan C, Zhu P, Jia H, et al. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26: 448–456

    Article  Google Scholar 

  78. Guo S, Kou W, Wu W, et al. Thin laminar inorganic solid electrolyte with high ionic conductance towards highperformance all-solid-state lithium battery. Chemical Engineering Journal, 2022, 427: 131948

    Article  Google Scholar 

  79. Bae J, Li Y, Zhao F, et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15: 46–52

    Article  Google Scholar 

  80. Cai D, Wang D, Chen Y, et al. A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries. Chemical Engineering Journal, 2020, 394: 124993

    Article  Google Scholar 

  81. Wang S, Li Q, Bai M, et al. A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries. Electrochimica Acta, 2020, 353: 136604

    Article  Google Scholar 

  82. Wu J, Wu X, Wang W, et al. Dense PVDF-type polymer-in-ceramic electrolytes for solid state lithium batteries. RSC Advances, 2020, 10(38): 22417–22421

    Article  Google Scholar 

  83. Jiang T, He P, Wang G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10(12): 1903376

    Article  Google Scholar 

  84. Nkosi F P, Valvo M, Mindemark J, et al. Garnet-poly(ε-caprolactone-co-trimethylene carbonate) polymer-in-ceramic composite electrolyte for all-solid-state lithium-ion batteries. ACS Applied Energy Materials, 2021, 4(3): 2531–2542

    Article  Google Scholar 

  85. Wang Z, Zhang P, Jia Y, et al. Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. Journal of Alloys and Compounds, 2021, 853: 157340

    Article  Google Scholar 

  86. Wang B, Wang G, He P, et al. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 642: 119952

    Article  Google Scholar 

  87. Zhang B, Liu Y, Liu J, et al. “Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries. Journal of Energy Chemistry, 2021, 52: 318–325

    Article  Google Scholar 

  88. Bonizzoni S, Ferrara C, Berbenni V, et al. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2019, 21(11): 6142–6149

    Article  Google Scholar 

  89. Menkin S, Lifshitz M, Haimovich A, et al. Evaluation of iontransport in composite polymer-in-ceramic electrolytes. Case study of active and inert ceramics. Electrochimica Acta, 2019, 304: 447–455

    Article  Google Scholar 

  90. Jiang H, Wu Y, Ma J, et al. Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries. Journal of Membrane Science, 2021, 640: 119840

    Article  Google Scholar 

  91. Zhang N, Wang G, Feng M, et al. In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2021, 9(7): 4018–4025

    Article  Google Scholar 

  92. Huo H, Chen Y, Luo J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Advanced Energy Materials, 2019, 9(17): 1804004

    Article  Google Scholar 

  93. Li B, Su Q, Liu C, et al. Stable interface of a high-energy solidstate lithium metal battery via a sandwich composite polymer electrolyte. Journal of Power Sources, 2021, 496: 229835

    Article  Google Scholar 

  94. Ling H, Shen L, Huang Y, et al. Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Applied Materials & Interfaces, 2020, 12(51): 56995–57002

    Article  Google Scholar 

  95. Liu K, Zhang R, Sun J, et al. Polyoxyethylene (PEO)∣PEO-perovskite∣PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Applied Materials & Interfaces, 2019, 11(50): 46930–46937

    Article  Google Scholar 

  96. Li B, Su Q, Yu L, et al. Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries. Journal of Membrane Science, 2021, 618: 118734

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2021YFB2500100) and the National Natural Science Foundation of China (Grant Nos. 51872196 and 22109114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenglin Hu or Jiayan Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, H., Hu, Z. et al. Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich. Front. Energy 16, 706–733 (2022). https://doi.org/10.1007/s11708-022-0833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0833-9

Keywords

Navigation