Skip to main content
Log in

Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid electrolyte is an important part of all-solid-state lithium-ion battery, and it is the key and difficult point in the research of all-solid-state lithium-ion battery. Both solid polymer electrolyte and inorganic ceramic electrolytes have obvious deficiencies in electrochemical and mechanical properties, but polymer-inorganic filler solid composite electrolyte is obtained by adding inorganic filler into solid polymer electrolyte and this way can complement their shortcomings. In this paper, the effect of inorganic fillers on lithium-ion migration in polymer electrolyte is analyzed. The latest research progress of solid composite electrolyte based on polyethylene oxide, polyacrylonitrile, and polycarbonate is introduced, which provides guidance for the research of solid composite electrolyte in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Q, Gao ZQ, Shi XM et al (2021) Recent advances on rare earths in solid lithium ion conductors[J]. J Rare Earths 39:1–10

    Article  Google Scholar 

  2. Nitta N, Wu FX, Lee JT et al (2015) Li-ion battery materials: present and future[J]. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  3. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry[J]. Nat Commun 11(1):1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng JC, Yang Z, Dai A et al. (2019) Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design[J]. Small, 1904854

  5. Xiang YH, Jiang YL, Liu SQ et al. (2020) Improved electrochemical performance of 0.5Li(2)MnO(3)center dot 0.5LiNi(0.5)Mn(0.5)O(2) cathode materials for lithium ion batteries synthesized by ionic-liquid-assisted hydrothermal method[J]. Frontiers in Chemistry, 8: 729.

  6. Cai YZ, Huang DQ, Ma ZL et al (2019) Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate[J]. Electrochim Acta 305:563–570

    Article  CAS  Google Scholar 

  7. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:16141

    Article  Google Scholar 

  8. Manthiram A, Yu XW, Wang SF (2017) Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater 2(4):16103

    Article  CAS  Google Scholar 

  9. Tao C, Gao MH, Yin BH et al (2017) A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Electrochim Acta 257:31–39

    Article  CAS  Google Scholar 

  10. Liu YX, Hu RZ, Zhang DC et al (2021) Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all solid-state lithium metal batteries[J]. Adv Mater 33:1–11

    Google Scholar 

  11. Cheng ZW, Liu T, Zhao B et al (2021) Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Materials 34:388–416

    Article  Google Scholar 

  12. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chem Soc Rev 43(13):4714–4727

    Article  CAS  PubMed  Google Scholar 

  13. Forsyth M, Porcarelli L, Wang XE et al (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries[J]. Acc Chem Res 52(3):686–694

    Article  CAS  PubMed  Google Scholar 

  14. Chen RS, Li QH, Yu XQ et al (2020) Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chem Rev 120(14):6820–6877

    Article  CAS  PubMed  Google Scholar 

  15. Subramanian K, Alexander GV, Karthik K et al (2021) A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries[J]. Journal of Energy Storage 33:102157

    Article  Google Scholar 

  16. Li GZ, Li MS, Dong L et al (2014) Low energy ion beam assisted deposition of controllable solid state electrolyte LiPON with increased mechanical properties and ionic conductivity[J]. ScienceDirect 39(30):17466–17472

    CAS  Google Scholar 

  17. Jiang Y, Huang Y, Hu ZW et al (2020) Effects of B-site ion (Nb5+) substitution on the microstructure and ionic conductivity of Li05La0.5TiO.3 solid electrolytes[J]. Ferroelectrics 554(1):89–96

    Article  CAS  Google Scholar 

  18. Zhao EQ, Ma FR, Guo YD et al (2016) Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries[J]. RSC Adv 6(95):92579–92585

    Article  CAS  Google Scholar 

  19. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X = 0–2)[J]. Power Sources 196:3342–3345

    Article  CAS  Google Scholar 

  20. Wang SF, Xu HH, Li WD et al (2018) Interfacial chemistry in solid-state batteries: formation of interphase and its consequences[J]. J Am Chem Soc 140(1):250–257

    Article  CAS  PubMed  Google Scholar 

  21. Li YT, Xu BY, Xu HH et al (2017) Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angewandte Chemie-International Edition 56(3):753–756

    Article  CAS  PubMed  Google Scholar 

  22. Luo ST, Wang ZY, Fan AR et al (2021) A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film[J]. Journal of Power Sources 485:229325

    Article  CAS  Google Scholar 

  23. Alexander GV, Indu MS, Kamakshy S et al (2020) Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery[J]. Electrochimica Acta 332:135511

    Article  CAS  Google Scholar 

  24. Zhou D, Shanmukaraj D, Tkacheva A et al (2019) Polymer electrolytes for lithium-based batteries: advances and prospects[J]. CHEM 5(9):2326–2352

    Article  CAS  Google Scholar 

  25. Dong DR, Zhou B, Sun YF et al (2019) Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries[J]. Nano Lett 19(4):2343–2349

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Y, Yan XM, Ma ZF et al (2018) Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries[J]. Polymers 10(11):1237

    Article  PubMed Central  Google Scholar 

  27. Putri RM, Sundari CDD, Floweri O et al (2021) PEO/PVA/LiOH solid polymer electrolyte prepared via ultrasound-assisted solution cast method[J]. Journal of Non-Crystalline Solids 556:120549

    Article  CAS  Google Scholar 

  28. Zheng Q, Ma L, Khurana R et al (2016) Structure-property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance[J]. Chem Sci 7(11):6832–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee PC, Han TH, Hwang T et al (2012) Electrochemical double layer capacitor performance of electrospun polymer fiber-electrolyte membrane fabricated by solvent-assisted and thermally induced compression molding processes[J]. J Membr Sci 409:365–370

    Article  Google Scholar 

  30. Ngai KS, Ramesh S, Ramesh K et al (2016) A review of polymer electrolytes: fundamental, approaches and applications[J]. Ionics 22(8):1259–1279

    Article  CAS  Google Scholar 

  31. Guo QP, Han Y, Wang H et al (2017) New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries[J]. ACS Appl Mater Interfaces 9(48):41837–41844

    Article  CAS  PubMed  Google Scholar 

  32. Tan GQ, Wu F, Zhan C et al (2016) Solid-state Li-ion batteries using fast, stable, glassy nanocomposite electrolytes for good safety and long cycle-life[J]. Nano Lett 16(3):1960–1968

    Article  CAS  PubMed  Google Scholar 

  33. Park H, Lee EG, Kim D et al (2020) Development of free-standing phosphate/polymer composite electrolyte films for room temperature operating Li+ rechargeable solid-state battery[J]. Solid State Ionics 334:115137

    Article  Google Scholar 

  34. Chu JY, Lee KH, Kim AR et al (2019) Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes[J]. Compos B 164:324–332

    Article  CAS  Google Scholar 

  35. Wang ZY, Chang M, Yan XM et al (2017) Preparation and performance study on P(St-MMA)-SiO2 doped P(VDF-HFP) based composite polymer electrolyte[J]. Polym Int 66(3):485–491

    Article  CAS  Google Scholar 

  36. Han PF, Zhu YW, Liu J (2015) An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method[J]. J Power Sources 284:459–465

    Article  CAS  Google Scholar 

  37. Ashrafi R, Sahu DK, Kesharwani P et al (2014) Ag+-ion conducting nano-composite polymer electrolytes (NCPEs): synthesis, characterization and all-solid-battery studies[J]. J Non-Cryst Solids 391:91–95

    Article  CAS  Google Scholar 

  38. Feng JN, Wang L, Chen YJ et al (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review[J]. Nano Convergence 8(1):1–12

    Article  Google Scholar 

  39. Golodnitsky D, Strauss E, Peled E et al (2015) Review-on order and disorder in polymer electrolytes[J]. J Electrochem Soc 162(14):A2551–A2566

    Article  CAS  Google Scholar 

  40. Li S, Zhang SQ, Shen L et al (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Advanced Science 7(5):1903088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma Q, Zhang H, Zhou CW et al (2016) Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie-International Edition 55(7):2521–2525

    Article  CAS  PubMed  Google Scholar 

  42. Chinnam PR, Wunder SL (2013) Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li+ ion transference number[J]. Journal of Materials Chemistry A 1(5):1731–1739

    Article  CAS  Google Scholar 

  43. Chen H, Zhou CJ, Dong XR et al (2021) Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries[J]. ACS Appl Mater Interfaces 13(19):22978–22986

    Article  CAS  PubMed  Google Scholar 

  44. Rosenwinkel MP, Andersson R, Mindemark J et al (2020) Coordination effects in polymer electrolytes: fast Li+ transport by weak ion binding[J]. J Phys Chem C 124(43):23588–23596

    Article  CAS  Google Scholar 

  45. Zhang H, Li CM, Piszcz M et al (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem Soc Rev 46(3):797–815

    Article  CAS  PubMed  Google Scholar 

  46. Dong DP, Saelzer F, Roling B et al (2018) How efficient is Li+ ion transport in solvate ionic liquids under anion-blocking conditions in a battery? [J]. Phys Chem Chem Phys 20(46):29174–29183

    Article  CAS  PubMed  Google Scholar 

  47. Han FD, Zhu YZ, He XF et al (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater 6(8):1501590

    Article  Google Scholar 

  48. Ruschhaupt P, Pohlmann S, Varzi A et al (2020) Determining realistic electrochemical stability windows of electrolytes for electrical double-layer capacitors[J]. Batteries Supercaps 3(8):698–707

    Article  CAS  Google Scholar 

  49. Sun Y, Yan WN, An L et al (2017) A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Solid State Ionics 301:59–63

    Article  CAS  Google Scholar 

  50. Ma C, Feng YM, Xing FZ et al (2019) A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries[J]. Journal of Materials Chemistry A 7(34):19970–19976

    Article  CAS  Google Scholar 

  51. Zhao CZ, Zhang XQ, Cheng XB et al (2017) An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. PNAS 114(42):11069–11074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He KQ, Chen CL, Fan R et al. (2019) Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries[J]. Composites Science and Technology, 175: 28–34

  53. Wang XZ, Zhang YB, Zhang X et al. (2018) Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 10(29): 24791–24798.

  54. Zheng J, Tang MX, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie-International Edition 55(40):12538–12542

    Article  CAS  PubMed  Google Scholar 

  55. Zheng J, Hu YY (2018) New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Appl Mater Interfaces 10(4):4113–4120

    Article  CAS  PubMed  Google Scholar 

  56. Yang T, Zheng J, Cheng Q et al (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Appl Mater Interfaces 9(26):21773–21780

    Article  CAS  PubMed  Google Scholar 

  57. Shigenobu K, Shibata M, Dokko K et al (2021) Anion effects on Li ion transference number and dynamic ion correlations in glyme-Li salt equimolar mixtures[J]. Phys Chem Chem Phys 23(4):2622–2629

    Article  CAS  PubMed  Google Scholar 

  58. Park JH, Suh K, Rohman MR et al (2015) Solid lithium electrolytes based on an organic molecular porous solid[J]. Chem Commun 51(45):9313–9316

    Article  CAS  Google Scholar 

  59. Zhang H, Oteo U, Zhu HJ et al (2019) Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie-International Edition 58(23):7829–7834

    Article  CAS  PubMed  Google Scholar 

  60. Stolwijk NA, Heddier C, Reschke M et al (2013) Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes[J]. Macromolecules 46(21):8580–8588

    Article  CAS  Google Scholar 

  61. Temeche E, Zhang XY, Laine RM (2020) Solid electrolytes for Li-S batteries: solid solutions of poly(ethylene oxide) with LixPON- and LixSiPON-based polymers[J]. ACS Appl Mater Interfaces 12(27):30353–30364

    Article  CAS  PubMed  Google Scholar 

  62. Sivaraj P, Abhilash K P, Nalini B, et al. (2020) Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries[J]. Journal of Solid State Electrochemistry, 25(3): 905–917

  63. Wang XL, Hao XJ, Xia Y et al (2019) A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries[J]. J Membr Sci 582:37–47

    Article  CAS  Google Scholar 

  64. Zhang JJ, Zang X, Wen HJ, et al. (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry, 5(10): 4940–4948

  65. Yue HY, Li JX, Wang QX et al (2018) Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries[J]. ACS Sustainable Chem Eng 6(1):268–274

    Article  CAS  Google Scholar 

  66. Hsu CY, Liu RJ, Hsu CH et al (2016) High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery[J]. RSC Adv 6(22):18082–18088

    Article  CAS  Google Scholar 

  67. Jyothi NK, Venkataratnam KK, Murty PN et al (2016) Preparation and characterization of PAN-KI complexed gel polymer electrolytes for solid-state battery applications[J]. Bull Mater Sci 39(4):1047–1055

    Article  CAS  Google Scholar 

  68. Han LF, Wang JL, Mu XW et al (2021) Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes[J]. J Colloid Interface Sci 585:596–604

    Article  CAS  PubMed  Google Scholar 

  69. Lim YJ, An YH, Jo NJ (2012) Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery[J]. Nanoscale Res Lett 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zewde BW, Admassie S, Zimmermann J et al (2013) Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2O3 ceramic filler[J]. Chemsuschem 6(8):1400–1405

    Article  CAS  PubMed  Google Scholar 

  71. Lin DC, Liu W, Liu YY et al (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Lett 16(1):459–465

    Article  CAS  PubMed  Google Scholar 

  72. Li XL, Wang XY, Shao DS et al (2019) Preparation and performance of poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries[J]. J Appl Polym Sci 136(19):47498

    Article  Google Scholar 

  73. Sheng OW, Jin CB, Luo JM et al (2018) Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Lett 18(5):3104–3112

    Article  CAS  PubMed  Google Scholar 

  74. Wen J, Zhang R, Zhao QN et al (2020) Hydroxyapatite nanowire-reinforced poly(ethylene oxide)-based polymer solid electrolyte for application in high-temperature lithium batteries[J]. ACS Appl Mater Interfaces 12(49):54637–54643

    Article  CAS  PubMed  Google Scholar 

  75. Sun ZJ, Li YH, Zhang SY et al (2019) G-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability[J]. Journal of Materials Chemistry A 7(18):11069–11076

    Article  CAS  Google Scholar 

  76. Liang FQ, Wen ZY (2021) MOF/poly(ethylene oxide) composite polymer electrolyte for solid-state lithium battery[J]. J Inorg Mater 36(3):332–336

    Article  Google Scholar 

  77. Zhuang H, Ma WC, Xie JW et al (2021) Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries[J]. Journal of Alloys and Compounds 860:157915

    Article  CAS  Google Scholar 

  78. Nguyen QH, Luu VT, Nguyen HL et al (2021) Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries[J]. Frontiers In Chemistry 8:619832

    Article  PubMed  PubMed Central  Google Scholar 

  79. Song SF, Wu YM, Tang WP, et al. (2019) Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide)[J]. ACS Sustainable Chemistry & Engineering, 7(7): 7163-+

  80. Choi JH, Lee CH, Yu JH et al (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix[J]. J Power Sources 274:458–463

    Article  CAS  Google Scholar 

  81. Cheng SHS, He KQ, Liu Y et al (2017) Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte[J]. Electrochim Acta 253:430–438

    Article  CAS  Google Scholar 

  82. Wang CH, Yang YF, Liu XJ et al (2017) Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries[J]. ACS Appl Mater Interfaces 9(15):13694–13702

    Article  CAS  PubMed  Google Scholar 

  83. Li Y, Wang H (2021) Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries[J]. Ind Eng Chem Res 60(3):1494–1500

    Article  CAS  Google Scholar 

  84. Liu LH, Chu LH, Jiang B, et al. (2019) Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries[J]. Solid State Ionics, 331: 89–95

  85. Zheng J, Wang PB, Liu HY et al (2019) Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes[J]. ACS Applied Energy Materials 2(2):1452–1459

    Article  CAS  Google Scholar 

  86. Li X, Wang DH, Wang HC et al (2019) Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery[J]. ACS Appl Mater Interfaces 11(25):22745–22753

    Article  CAS  PubMed  Google Scholar 

  87. Zhao YR, Wu C, Peng G et al (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. J Power Sources 301:47–53

    Article  CAS  Google Scholar 

  88. Hu P, Chai JC, Duan YL et al (2016) Progress in nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A 4(26):10070–10083

    Article  CAS  Google Scholar 

  89. Jia WS, Li ZL, Wu ZR et al (2018) Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte[J]. Solid State Ionics 315:7–13

    Article  CAS  Google Scholar 

  90. Liu W, Lin DC, Sun J et al (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano 10(26):11407–11413

    Article  CAS  PubMed  Google Scholar 

  91. Zhang X, Xu BQ, Lin YH et al. (2018) Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes[J]. Solid State Ionics, 327: 32–38

  92. Tran HK, Wu YSA, Chien WC et al (2020) Composite polymer electrolytes based on PVA/PAN for all-solid-state lithium metal batteries operated at room temperature[J]. ACS Applied Energy Materials 3(11):11024–11035

    Article  CAS  Google Scholar 

  93. Li ZG, Matsumoto HS, Tominaga Y (2018) Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers[J]. Polym Adv Technol 29(2):820–824

    Article  CAS  Google Scholar 

  94. He ZJ, Chen L, Zhang BC et al (2018) Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries[J]. J Power Sources 392:232–238

    Article  CAS  Google Scholar 

  95. Tominaga Y, Yamazaki K (2014) Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun 50(34):4448–4450

    Article  CAS  Google Scholar 

  96. Zhao YC, Zheng Y, Cai SJ et al. (2021) Li0.35La0.55TiO3 nanofibers filled poly (ethylene carbonate) composite electrolyte with enhanced ion conduction and electrochemical stability[J]. Thin Solid Films, 734: 138835

  97. Zhang LK, Jing MX, Yang H et al (2020) Highly efficient interface modification between poly(propylene carbonate)-based solid electrolytes and a lithium anode by facile graphite coating[J]. ACS Sustainable Chemistry & Engineering 8(46):17106–17115

    Article  CAS  Google Scholar 

  98. Jia MY, Zhao N, Bi ZJ et al (2020) Polydopamine-coated garnet particles homogeneously distributed in poly(propylene carbonate) for the conductive and stable membrane electrolytes of solid lithium batteries[J]. ACS Appl Mater Interfaces 12(41):46162–46169

    Article  CAS  PubMed  Google Scholar 

  99. Chen H, Jing MX, Han C et al (2019) A novel organic/inorganic composite solid electrolyte with functionalized layers for improved room-temperature rate performance of solid-state lithium battery[J]. Int J Energy Res 43(11):5912–5921

    Article  CAS  Google Scholar 

  100. Hua S, Jing MX, Han C et al (2019) A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery[J]. Int J Energy Res 43(13):7296–7305

    CAS  Google Scholar 

  101. Wang LY, Hu SM, Su JM et al (2019) Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries[J]. ACS Appl Mater Interfaces 11(45):42715–42721

    Article  CAS  PubMed  Google Scholar 

  102. Ma C, Dai K, Hou HS et al (2018) High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers[J]. Advanced Science 5(5):1–9

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of Hunan Province, China (No. 2020JJ4620), the Scientific Research Foundation of Hunan Provincial Education Department (Nos. 19B010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liubin Song.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Long, T., Song, L. et al. Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics 28, 15–26 (2022). https://doi.org/10.1007/s11581-021-04340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04340-2

Keywords

Navigation