Skip to main content

Advertisement

Log in

LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, fabrication and electrochemical behavior of polymer-in-ceramic composite electrolytes based on lithium-ion conducting triclinic LiSn2(PO4)3 (LSP) for all-solid-state batteries are reported. The composite ceramic electrolyte (CCE) was fabricated using polymeric salt (PEO+LiClO4) as a filler to the ceramic compound LSP using a simple hot-press technique. The x-ray diffraction and Fourier transform infrared spectroscopy (FTIR) studies were performed to determine the structure of the composite electrolyte. Composite electrolyte containing 30 wt.% PEO+LiClO4 exhibit the highest conductivity of ~ 3.48 × 10−5 Scm−1 at 27 °C, which improves to ~ 1.18 × 10−4 Scm−1 at 60 °C. The low activation energy calculated to be ~ 0.34 eV results from additional mobile lithium-ion in a composite electrolyte. The field emission scanning electron microscopy (FESEM) and energy-dispersive x-ray spectroscopy (EDX) reveals the Li+ diffusion route along with the 3D inter-connected LSP-(PEO+LiClO4) interfaces and distribution of polymeric salt to LSP. The ionic and Li+ transference numbers calculated by a combination of ac signal and dc polarization were found to be ~ 0.99 and ~ 0.39, respectively. The electrochemical performance of the CCE was tested using the cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) in symmetric cell employing lithium metal as the electrode. Composite electrolyte exhibited highly reversible lithium stripping/plating behavior at low current density. All-solid-state cells fabricated using LiMn2O4 as the cathode, Li metal as the anode, and the LSP-30 (PEO+LiClO4) as the solid electrolyte deliver a high specific discharge capacity of ~ 103.3 mAhg−1 at a current density of 100 μAcm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rekioua D (2020) Hybrid renewable energy systems. Springer International Publishing, Cham

    Google Scholar 

  2. Abdi H, Mohammadi-ivatloo B, Javadi S, Khodaei AR, Dehnavi E (2017) Energy Storage Systems. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable Lithium batteries. Nature 414(6861):359–367

    CAS  PubMed  Google Scholar 

  4. Tarascon JM (2010) Key challenges in future Li-battery research. Phil Trans A Math Phys Eng Sci 368(1923):3227–3241

    Google Scholar 

  5. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    CAS  Google Scholar 

  6. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    CAS  PubMed  Google Scholar 

  7. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295

    CAS  Google Scholar 

  8. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1(9):16141

    Google Scholar 

  9. Bai P, Li J, Brushett FR, Bazant MZ (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 9(10):3221–3229

    CAS  Google Scholar 

  10. Lu D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged Lithium metal batteries with liquid electrolytes. Adv Energy Mater 5(3):1400993

    Google Scholar 

  11. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618

    CAS  Google Scholar 

  12. Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

    CAS  Google Scholar 

  13. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for Lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

    CAS  PubMed  Google Scholar 

  14. Cheng EJ, Sharafi A, Sakamoto J (2017) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85–91

    CAS  Google Scholar 

  15. Kato Y, Hori S, Saito T et al (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 16030

  16. Li S, Zhang S-Q, Shen L et al (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for Lithium batteries. Adv Sci 7:1903088

    CAS  Google Scholar 

  17. Ma Z, Xue H-G, Guo S-P (2018) Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. J Mater Sci 53(6):3927–3938

    CAS  Google Scholar 

  18. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2(4):16103

    CAS  Google Scholar 

  19. Perea A, Dontigny M, Zaghib K (2017) Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte. J Power Sources 359:182–185

    CAS  Google Scholar 

  20. Ramar V, Kumar S, Sivakkumar SR, Balaya P (2018) NASICON-type La3+ substituted LiZr2(PO4)3 with improved ionic conductivity as solid electrolyte. Electrochim Acta 271:120–126

    CAS  Google Scholar 

  21. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    CAS  Google Scholar 

  22. Tao T, Lu S, Chen Y (2018) A review of advanced flexible lithium-ion batteries. Adv Mater Technol 3(9):1700375

    Google Scholar 

  23. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727

    CAS  PubMed  Google Scholar 

  24. Yu X, Manthiram A (2020) A Long cycle life, all-solid-state Lithium battery with a ceramic–polymer composite electrolyte. ACS Appl Energy Mater 3(3):2916–2924

    CAS  Google Scholar 

  25. Liu J, Liu T, Pu Y, Guan M, Tang Z, Ding F, Xu Z, Li Y (2017) Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv 7(74):46545–46552

    CAS  Google Scholar 

  26. Martinez-Juarez A, Jimenez R, Duran-Martin P, Ibañez J, Rojo JM (1997) Effect of the phase transition of LiSn2(PO4)3 on the ion conduction in LiSn2(PO4)3 - Teflon composites. J Phys Condens Matter 9(20):4119–4128

    CAS  Google Scholar 

  27. Morin E, Angenault J, Couturier JC, Quarton M, He H, Klinowski J (1998) Phase transition and crystal structures of LiSn2(PO4)3. Eur J Solid State Inorg Chem 34:947–958

    Google Scholar 

  28. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069

    CAS  Google Scholar 

  29. Qin H, Fu K, Zhang Y, Ye Y, Song M, Kuang Y, Jang SH, Jiang F, Cui L (2020) Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte. Energy Storage Mater 28:293–299

    Google Scholar 

  30. Karthik K, Murugan R (2018) Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J Solid State Electrochem 22(10):2989–2998

    CAS  Google Scholar 

  31. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based Nanocomposite polymer electrolytes. J Electrochem Soc 147(5):1718–1721

    CAS  Google Scholar 

  32. Keller M, Appetecchi GB, Kim G-T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S (2017) Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J Power Sources 353:287–297

    CAS  Google Scholar 

  33. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184

    CAS  Google Scholar 

  34. Liang J, Luo J, Sun Q, Yang X, Li R, Sun X (2019) Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater 21:308–334

    Google Scholar 

  35. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947

    Google Scholar 

  36. Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu YS, Chen L (2018) Solid-state sodium batteries. Adv Energy Mater 8(17):1703012

    Google Scholar 

  37. Li D, Chen L, Wang T, Fan L-Z (2018) 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free Lithium metal batteries. ACS Appl Mater Interfaces 10(8):7069–7078

    CAS  PubMed  Google Scholar 

  38. Liu Q, Liu Y, Jiao X, Song Z, Sadd M, Xu X, Matic A, Xiong S, Song J (2019) Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Storage Mater 23:105–111

    Google Scholar 

  39. Zhang Y, Chen R, Wang S, Liu T, Xu B, Zhang X, Wang X, Shen Y, Lin YH, Li M, Fan LZ, Li L, Nan CW (2020) Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater 25:145–153

    CAS  Google Scholar 

  40. Colombo F, Bonizzoni S, Ferrara C, Simonutti R, Mauri M, Falco M, Gerbaldi C, Mustarelli P, Ruffo R (2020) Polymer-in-ceramic nanocomposite solid electrolyte for lithium metal batteries encompassing PEO-grafted TiO2 nanocrystals. J Electrochem Soc 167(7):070535

    Google Scholar 

  41. Kumar S, Balaya P (2016) Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3. Solid State Ionics 296:1–6

    CAS  Google Scholar 

  42. Pareek T, Dwivedi S, Singh B, Kumar D, Kumar P, Kumar S (2019) LiSnZr(PO4)3: NASICON-type solid electrolyte with excellent room temperature Li+ conductivity. J Alloys Compd 777:602–611

    CAS  Google Scholar 

  43. Smith S, Thompson T, Sakamoto J, Allen JL, Baker DR, Wolfenstine J (2017) Electrical, mechanical and chemical behavior of Li1.2Zr1.9Sr0.1(PO4)3. Solid State Ionics 300:38–45

    CAS  Google Scholar 

  44. Waetzig K, Rost A, Langklotz U, Matthey B, Schilm J (2016) An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics. J Eur Ceram Soc 36(8):1995–2001

    CAS  Google Scholar 

  45. Xi J, Qiu X, Ma X et al (2005) Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 176(13-14):1249–1260

    CAS  Google Scholar 

  46. Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochim Acta A 76(3-4):287–292

    CAS  Google Scholar 

  47. Wang W, Yi E, Fici AJ, Laine RM, Kieffer J (2017) Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J Phys Chem C 121(5):2563–2573

    CAS  Google Scholar 

  48. Dayanand C, Bhikshamaiah G, Tyagaraju VJ, Salagram M, Krishna Murthy ASR (1996) Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1−x) P2O5 vitreous system. J Mater Sci 31(8):1945–1967

    CAS  Google Scholar 

  49. ElBellihi A, Bayoumy WA, Masoud EM, Mousa M (2012) Preparation, characterizations and conductivity of composite polymer electrolytes based on PEO-LiClO4 and Nano ZnO filler. Bull Kor Chem Soc 33(9):2949–2954

    CAS  Google Scholar 

  50. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 3(1):1–17

    Google Scholar 

  51. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61(6):494

    CAS  Google Scholar 

  52. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    CAS  Google Scholar 

  53. Chen K-H, Wood K, Kazyak E et al (2017) Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J Mater Chem A 5(23):11671–11681

    CAS  Google Scholar 

  54. Xia Y (1996) An investigation of Lithium ion insertion into spinel structure Li-Mn-O compounds. J Electrochem Soc 143(3):825

    CAS  Google Scholar 

Download references

Acknowledgments

Authors thank IIT Indore for FESEM and FTIR facilities.

Funding

This work is supported by the Department of Science and Technology (DST), Govt. of India (IFA15/MS-49) and Science & Engineering Research Board (SERB), Grand No. ECR/2017/000561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.A., Pareek, T., Dwivedi, S. et al. LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. J Solid State Electrochem 24, 2407–2417 (2020). https://doi.org/10.1007/s10008-020-04783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04783-z

Keywords

Navigation