Skip to main content
Log in

Research progress of p-type Fe-based skutterudite thermoelectric materials

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Filled skutterudite is currently one of the most promising intermediate-temperature thermoelectric (TE) materials, having good thermoelectric transport performance and excellent mechanical properties. For the preparation of high-efficiency filled skutterudite TE devices, it is important to have p- and n-type filled skutterudite TE materials with matching performance. However, the current TE properties of p-type Fe-based filled skutterudite materials are worse than n-type filled skutterudite materials. Therefore, how to obtain high-performance p-type Fe-based filled skutterudite materials is the key to preparation of high-efficiency skutterudite-based TE devices. This review summarizes some methods for optimizing the thermal transport performance of p-type filled skutterudite materials at the atomic-molecular and nano-mesoscopic scale that have been used in recent years. These methods include doping, multi-atom filling, and use of low-dimensional structure and of nanocomposite. In addition, the synergistic optimization methods of the electrical and thermal transport parameters and advanced preparation technologies of p-type filled skutterudite materials in recent years are also briefly summarized. These optimizational methods and advanced preparation technologies can significantly improve the TE properties of p-type Fe-based filled skutterudite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461

    Article  CAS  Google Scholar 

  2. Rogl G, Grytsiv A, Rogl P, et al. Multifilled nanocrystalline p-type didymium-skutterudites with ZT > 1.2. Intermetallics, 2010, 18(12): 2435–2444

    Article  CAS  Google Scholar 

  3. Yu J, Zhao W Y, Lei B, et al. Effects of Ge dopant on thermoelectric properties of barium and indium double-Filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1400–1405

    Article  CAS  Google Scholar 

  4. Zhou C, Sakamoto J, Morelli D. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. Journal of Electronic Materials, 2011, 40(5): 547–550

    Article  CAS  Google Scholar 

  5. Benyahia M, Vaney J B, Leroy E, et al. Thermoelectric properties in double-filled Ce0.3InyFe1.5Co2.5Sb12 p-type skutterudites. Journal of Alloys and Compounds, 2017, 696(5): 1031–1038

    Article  CAS  Google Scholar 

  6. Zhang L, Duan F F, Li X D, et al. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12–xGex through spontaneous precipitate. Journal of Applied Physics, 2013, 114(8): 083715

    Article  CAS  Google Scholar 

  7. Lei Y, Gao W S, Zheng R, et al. Rapid synthesis, microstructure, and thermoelectric properties of skutterudites. Journal of Alloys and Compounds, 2019, 806(25): 537–542

    Article  CAS  Google Scholar 

  8. Zhao W, Liu Z, Sun Z, et al. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251

    Article  CAS  Google Scholar 

  9. Liu Z, Zhu J, Wei P, et al. Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension. ACS Applied Materials & Interfaces, 2019, 11(49): 45875–45884

    Article  CAS  Google Scholar 

  10. Liu Z Y, Zhu J L, Tong X, et al. A review of CoSb3-based skutterudite thermoelectric materials. Journal of Advanced Ceramics, 2020, 9(6): 647–673

    Article  CAS  Google Scholar 

  11. Tan G, Liu W, Wang S, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(40): 12657–12668

    Article  CAS  Google Scholar 

  12. Zhao W, Liu Z, Wei P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12(1): 55–60

    Article  CAS  Google Scholar 

  13. Bhandari C M. Thermoelectric transport theory. In: Rowe D M, eds. CRC Handbook of Thermoelectrics. Boca Raton, USA: CRC Press, 1995

    Google Scholar 

  14. Ioffe A V, Ioffe A F. Thermal conductivity of semiconductors. Izvestiâ Akademii Nauk SSSR. Seriâ Fiziceskaâ, 1956, 20: 65–72

    CAS  Google Scholar 

  15. Fröhlich H. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361

    Article  Google Scholar 

  16. Alexandrov A S. Lattice polarons and switching in molecular nanowires and quantum dots. In: Korkin A, Labanowski J, Gusev E, et al., eds. Nanotechnology for Electronic Materials and Devices. Boston, MA, USA: Springer, 2007, 305–356

    Chapter  Google Scholar 

  17. Kim H, Kim M H, Kaviany M. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. Journal of Applied Physics, 2014, 115(12): 123510

    Article  CAS  Google Scholar 

  18. Caillat T, Borshchevsky A, Fleurial J P. Properties of single crystalline semiconducting CoSb3. Journal of Applied Physics, 1996, 80(8): 4442–4449

    Article  CAS  Google Scholar 

  19. Duan F, Zhang L, Dong J Y, et al. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites. Journal of Applied Physics, 2015, 639(5): 68–73

    CAS  Google Scholar 

  20. Tan G, Chi H, Liu W, et al. Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(32): 8372–8380

    Article  CAS  Google Scholar 

  21. Fu L W, Yang J Y, Jiang Q H, et al. Thermoelectric performance ehancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores. Journal of Electronic Materials, 2016, 45(3): 1240–1244

    Article  CAS  Google Scholar 

  22. Shaheen N, Shen X, Javed M S, et al. High-temperature thermoelectric properties of Ge-substituted p-type Nd-filled skutterudites. Journal of Electronic Materials, 2017, 46(5): 2958–2963

    Article  CAS  Google Scholar 

  23. Shaheen N, Javed M S, Shan H U, et al. Enhanced thermoelectric properties in Ge-doped and single-filled skutterudites prepared by unique melt-spinning method. Ceramics International, 2018, 44(11): 12610–12614

    Article  CAS  Google Scholar 

  24. Bhardwaj R, Gahtori B, Johari K K, et al. Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites. ACS Applied Energy Materials, 2019, 2(2): 1067–1076

    Article  CAS  Google Scholar 

  25. Jeitschko W, Braun D J. Synthesis and crystal structure of the iron polyphosphide FeP4. Acta Crystallographica Section B, 1978, 34(11): 3196–3201

    Article  Google Scholar 

  26. Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328

    Article  CAS  Google Scholar 

  27. Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R= La, Ce, and Sr). Applied Physics Letters, 2007, 90(19): 192111

    Article  CAS  Google Scholar 

  28. Kim J, Ohishi Y, Muta H, et al. Enhanced thermoelectric properties of Ga and Ce double-filled p-type skutterudites. Materials Transactions, 2019, 60(6): 1078–1082

    Article  CAS  Google Scholar 

  29. Dabral K P, Vitta S. P-type high temperature thermoelectric behavior of Dy filled CoSb3 and Fe1.5Co2.5Sb12 and their magnetic properties. ACS Applied Energy Materials, 2020, 3(7): 6644–6656

    Article  CAS  Google Scholar 

  30. Zhou C, Morelli D, Zhou X, et al. Thermoelectric properties of p-type Yb-filled skutterudite YbxFeyCo4–ySb12. Intermetallics, 2011, 19(10): 1390–1393

    Article  CAS  Google Scholar 

  31. Dong Y, Puneet P, Tritt T M, et al. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4–z-FezSb12. Journal of Applied Physics, 2012, 112(8): 083718

    Article  CAS  Google Scholar 

  32. Puneet P, He J, Zhu S, et al. Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. Journal of Applied Physics, 2012, 112(3): 033710

    Article  CAS  Google Scholar 

  33. Qiu P F, Liu R H, Yang J, et al. Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites. Journal of Applied Physics, 2012, 111(2): 023705

    Article  CAS  Google Scholar 

  34. Rogl G, Grytsiv A, Falmbigl M, et al. Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1–xNix)4Sb12 (0.13⩽x⩽0.25, 0.46⩽y⩽0.68). Journal of Alloys and Compounds, 2012, 537(5): 242–249

    Article  CAS  Google Scholar 

  35. Tan G J, Wang S Y, Yan Y G, et al. Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4–xNixSb12 skutterudites by adjusting the carrier concentration. Journal of Alloys and Compounds, 2012, 513(5): 328–333

    Article  CAS  Google Scholar 

  36. Dong Y, Puneet P, Tritt T M, et al. High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Physica Status Solidi: Rapid Research Letters, 2013, 7(6): 418–420

    CAS  Google Scholar 

  37. Ballikaya S, Uzar N, Yildirim S, et al. Lower thermal conductivity and higher thermoelectric performance of Fe-substituted and Ce, Yb double-filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1622–1627

    Article  CAS  Google Scholar 

  38. Liu R, Yang J, Chen X, et al. P-type skutterudites RxMyFe3-CoSb12 (R, M= Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics, 2011, 19(11): 1747–1751

    Article  CAS  Google Scholar 

  39. Rogl G, Grytsiv A, Rogl P, et al. A new generation of p-type didymium skutterudites with high ZT. Intermetallics, 2011, 19(4): 546–555

    Article  CAS  Google Scholar 

  40. Park K H, Kim I H, Choi S M, et al. Preparation and thermoelectric properties of p-type Yb-filled skutterudites. Journal of Electronic Materials, 2013, 42(7): 1377–1381

    Article  CAS  Google Scholar 

  41. Liu R, Qiu P, Shi X, et al. Influence of Ru substitution on the thermoelectric properties of Ce(Fe1–xRux)4Sb12 solid solutions. Journal of the Physical Society of Japan, 2013, 82(12): 124608

    Article  CAS  Google Scholar 

  42. Park K H, Lim Y S, Seo W S, et al. Effects of heat treatment on the thermoelectric properties of Yb-filled skutterudites. Journal of the Korean Physical Society, 2013, 63(9): 1764–1767

    Article  CAS  Google Scholar 

  43. Qiu P, Shi X, Liu R, et al. Thermoelectric properties of manganese-doped p-type skutterudites CeyFe4–xMnxSb12. Functional Materials Letters, 2013, 6(5): 1340003

    Article  CAS  Google Scholar 

  44. Cho J Y, Ye Z, Tessema M M, et al. Thermoelectric performance of p-type skutterudites YbxFe4–yPtySb12 (0.8⩽x⩽1, y = 1 and 0.5). Journal of Applied Physics, 2013, 113(14): 224

    Google Scholar 

  45. Zhou L, Qiu P, Uher C, et al. Thermoelectric properties of p-type YbxLayFe27Co13Sb12 double-filled skutterudites. Intermetallics, 2013, 32: 209–213

    Article  CAS  Google Scholar 

  46. Geng H, Ochi T, Suzuki S, et al. Thermoelectric properties of multifilled skutterudites with La as the main filler. Journal of Electronic Materials, 2013, 42(7): 1999–2005

    Article  CAS  Google Scholar 

  47. Park K H, Lee S, Seo W S, et al. Synthesis and thermoelectric properties of CezFe4–xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 64(1): 84–88

    Article  CAS  Google Scholar 

  48. Yan Y G, Wong-Ng W, Li L, et al. Structures and thermoelectric properties of double-filled (CaxCe1−x)Fe4Sb12 skutterudites. Journal of Solid State Chemistry, 2014, 218: 221–229

    Article  CAS  Google Scholar 

  49. Tan G J, Wang S Y, Tang X F. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. Journal of Electronic Materials, 2014, 43(6): 1712–1717

    Article  CAS  Google Scholar 

  50. Tan G, Zheng Y, Yan Y, et al. Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4–xNixSb12. Journal of Alloys and Compounds, 2014, 584(25): 216–221

    Article  CAS  Google Scholar 

  51. Dong Y, Puneet P, Tritt T M, et al. High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. Journal of Materials Science, 2015, 50(1): 34–39

    Article  CAS  Google Scholar 

  52. Lee W M, Shin D K, Kim I H. Thermoelectric and transport properties of YbzFe4–xNixSb12 skutterudites. Journal of Electronic Materials, 2015, 44(6): 1432–1437

    Article  CAS  Google Scholar 

  53. Shin D K, Kim I H. Preparation and thermoelectric properties of p-type PrzFe4–xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 65(12): 2071–2076

    Article  CAS  Google Scholar 

  54. Dahal T, Gahlawat S, Jie Q, et al. Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4–xCoxSb12. Journal of Applied Physics, 2015, 117(5): 055101

    Article  CAS  Google Scholar 

  55. Dong Y, Nolas G S, Zeng X, et al. High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites. Journal of Materials Research, 2015, 30(17): 2558–2563

    Article  CAS  Google Scholar 

  56. Lee W M, Shin D K, Kim I H. Thermoelectric properties of LazFe4–xNixSb12 skutterudites. Journal of the Korean Physical Society, 2015, 66(2): 240–245

    Article  CAS  Google Scholar 

  57. Meng X F, Cai W, Liu Z H, et al. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition. Acta Materialia, 2015, 98(1): 405–415

    Article  CAS  Google Scholar 

  58. Song K M, Shin D K, Kim I H. Synthesis and thermoelectric properties of double-filled La1–zNdzFe4–xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2015, 67(9): 1597–1602

    Article  CAS  Google Scholar 

  59. Jeon B J, Shin D K, Kim I H. Synthesis and thermoelectric properties of La1–zYbzFe4–xNixSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1907–1913

    Article  CAS  Google Scholar 

  60. Joo G S, Shin D K, Kim I H. Synthesis and thermoelectric properties of p-type double-filled Ce1–zYbzFe4–xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1251–1256

    Article  CAS  Google Scholar 

  61. Shin D K, Kim I H. Electronic transport and thermoelectric properties of p-type NdzFe4–xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1234–1239

    Article  CAS  Google Scholar 

  62. Shin D K, Kim I H. Thermoelectric properties of p-type partially double-filled (Pr1–zNdz)yFe4–xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2016, 69(5): 798–805

    Article  CAS  Google Scholar 

  63. Peng S, Sun J, Cui B, et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in-situ formed Fe3Si nanoprecipitate. Inorganic Chemistry Frontiers, 2017, 4(10): 1697–1703

    Article  CAS  Google Scholar 

  64. Qin D D, Liu Y, Meng X F, et al. Graphene-enhanced thermoelectric properties of p-type skutterudites. Chinese Physics B, 2018, 27(4): 048402

    Article  CAS  Google Scholar 

  65. Woo H Y, Son G, Lee K M, et al. Thermal conductivity reduction by tuning the rattler fraction in a p-type CeyYb1–yFe3CoSb12 double-filled skutterudite. Journal of the Korean Physical Society, 2020, 77(8): 667–672

    Article  CAS  Google Scholar 

  66. Dahal T, Kim H S, Gahlawat S, et al. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22-Fe4–xCoxSb12. Acta Materialia, 2016, 117: 13–22

    Article  CAS  Google Scholar 

  67. Yang J, Qiu P, Liu R, et al. Trends in electrical transport of p-type skutterudites RFe4Sb12 (R= Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Physical Review B, 2011, 84(23): 235205

    Article  CAS  Google Scholar 

  68. Tan G, Wang S, Tang X, et al. Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4–xGaxSb12. Journal of Solid State Chemistry, 2012, 196: 203–208

    Article  CAS  Google Scholar 

  69. Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993, 47(24): 16631–16634

    Article  CAS  Google Scholar 

  70. Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727–12731

    Article  CAS  Google Scholar 

  71. Hicks L D, Harman T C, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Applied Physics Letters, 1993, 63(23): 3230–3232

    Article  CAS  Google Scholar 

  72. Halperin W P. Quantum size effects in metal particles. Reviews of Modern Physics, 1986, 58(3): 533–606

    Article  CAS  Google Scholar 

  73. Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053

    Article  CAS  Google Scholar 

  74. Jie Q, Zhou J, Shi X, et al. Strong impact ofgrain boundaries on the thermoelectric properties of non-equilibrium synthesized p-type Ce1.05Fe4Sb12.04 filled skutterudites with nanostructure. arXiv, 2010, 1006: 5715

    Google Scholar 

  75. Rogl G, Zehetbauer M, Kerber M, et al. Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p- and n-type Sb-based skutterudites. Materials Science Forum, 2011, 667–669: 1089–1094

    Google Scholar 

  76. Tan G, Zheng Y, Tang X. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multiscaled nanostructures. Applied Physics Letters, 2013, 103(18): 183904

    Article  CAS  Google Scholar 

  77. Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta Materialia, 2014, 76(1): 434–448

    Article  CAS  Google Scholar 

  78. Tafti M Y, Saleemi M, Toprak M S, et al. Fabrication and characterization of nanostructured thermoelectric FexCo1–xSb3. Open Chemistry, 2014, 13(1): 629–635

    CAS  Google Scholar 

  79. Guo L J, Zhang Y M, Zheng Y, et al. Super-rapid preparation of nanostructured NdxFe3CoSb12 compounds and their improved thermoelectric performance. Journal of Electronic Materials, 2016, 45(3): 1271–1277

    Article  CAS  Google Scholar 

  80. Guo L, Cai Z, Xu X, et al. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3841–3847

    Article  CAS  Google Scholar 

  81. Minnich A J, Dresselhaus M S, Ren Z F, et al. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479

    Article  CAS  Google Scholar 

  82. Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158

    Article  Google Scholar 

  83. Yamini S A, Wang H, Ginting D, et al. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483

    Article  CAS  Google Scholar 

  84. Sootsman J R, Kong H, Uher C, et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie International Edition, 2008, 47(45): 8618–8622

    Article  CAS  Google Scholar 

  85. Tan G J, Wang S Y, Li H, et al. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4–xZnxSb12. Journal of Solid State Chemistry, 2012, 187: 316–322

    Article  CAS  Google Scholar 

  86. Yu J, Zhao W, Zhou H, et al. Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scripta Materialia, 2013, 68(8): 643–646

    Article  CAS  Google Scholar 

  87. Liu Z, Zhu W, Nie X, et al. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. Journal of Materials Science Materials in Electronics, 2019, 30(13): 12493–12499

    Article  CAS  Google Scholar 

  88. Morelli D T, Meisner G P. Low temperature properties of the filled skutterudite CeFe4Sb12. Journal of Applied Physics, 1995, 77(8): 3777–3781

    Article  CAS  Google Scholar 

  89. Shi X, Zhang W, Chen L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Physical Review Letters, 2005, 95(18): 185503

    Article  CAS  Google Scholar 

  90. Guo L, Wang G, Peng K, et al. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scripta Materialia, 2016, 116: 26–30

    Article  CAS  Google Scholar 

  91. Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials. Intermetallics, 2019, 105: 44–47

    Article  CAS  Google Scholar 

  92. Lee K H, Bae S H, Choi S M. Phase formation behavior and thermoelectric transport properties of p-type YbxFe3CoSb12 prepared by melt spinning and spark plasma sintering. Materials, 2019, 13(1): 87

    Article  CAS  Google Scholar 

  93. Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109–114

    Article  CAS  Google Scholar 

  94. Zhang C, de la Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nano-composites via liquid-phase sintering. Nano Energy, 2016, 30: 630–638

    Article  CAS  Google Scholar 

  95. Zhang C, Ng H, Li Z, et al. Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2–xTe3 nanocomposites via a liquid-phase sintering process. ACS Applied Materials & Interfaces, 2017, 9(14): 12501–12510

    Article  CAS  Google Scholar 

  96. Meng X, Liu Z, Cui B, et al. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Advanced Energy Materials, 2017, 7(13): 1602582

    Article  CAS  Google Scholar 

  97. Meng X, Liu Y, Cui B, et al. High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20128–20137

    Article  CAS  Google Scholar 

  98. Jie Q, Wang H, Liu W, et al. Fast phase formation of double-filled p-type skutterudites by ball-milling and hotpressing. Physical Chemistry Chemical Physics, 2013, 15(18): 6809–6816

    Article  CAS  Google Scholar 

  99. Prado-Gonjal J, Vaqueiro P, Nuttall C, et al. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. Journal of Alloys and Compounds, 2017, 695(25): 3598–3604

    Article  CAS  Google Scholar 

  100. Lan Y, Minnich A J, Chen G, et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, 20(3): 357–376

    Article  CAS  Google Scholar 

  101. Zhou X, Wang G, Zhang L, et al. Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. Journal of Materials Chemistry, 2012, 22(7): 2958–2964

    Article  CAS  Google Scholar 

  102. Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055

    Article  CAS  Google Scholar 

  103. Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: Big efficiency gains from small features. Advanced Materials, 2010, 22(36): 3970–3980

    Article  CAS  Google Scholar 

  104. German R M, Suri P, Park S J. Review: Liquid phase sintering. Journal of Materials Science, 2009, 44(1): 1–39

    Article  CAS  Google Scholar 

  105. Farrer J K, Carter C B, Ravishankar N. The effects of crystallography on grain-boundary migration in alumina. Journal of Materials Science, 2006, 41(3): 661–674

    Article  CAS  Google Scholar 

  106. Valant M, Suvorov D, Pullar R C, et al. A mechanism for low-temperature sintering. Journal of the European Ceramic Society, 2006, 26(13): 2777–2783

    Article  CAS  Google Scholar 

  107. Yu J, Zhu W, Zhao W, et al. Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. Journal of Materials Science, 2020, 55(17): 7432–7440

    Article  CAS  Google Scholar 

  108. Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638

    Article  CAS  Google Scholar 

  109. Yan X, Liu W, Wang H, et al. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1–xTixCoSb0.8Sn0.2. Energy & Environmental Science, 2012, 5(6): 7543–7548

    Article  CAS  Google Scholar 

  110. Zhu G H, Lee H, Lan Y C, et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Physical Review Letters, 2009, 102(19): 196803

    Article  CAS  Google Scholar 

  111. Yang J, Hao Q, Wang H, et al. Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Physical Review B, 2009, 80(11): 115329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51872006) and the Anhui University of Technology High-Level Doctoral Student Training Program (DT17200008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Liu, Z., Zhu, J. et al. Research progress of p-type Fe-based skutterudite thermoelectric materials. Front. Mater. Sci. 15, 317–333 (2021). https://doi.org/10.1007/s11706-021-0563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0563-7

Keywords

Navigation