Skip to main content

Advertisement

Log in

Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The improvement of thermoelectric properties of p-type iron-based skutterudites is limited due to the present of more iron-rich impurity phases induced by the inherent structural instability of Fe-containing skutterudites. How to reduce the content of the impurity phase in p-type Fe-based skutterudites is a key to obtain high ZT value. Ce1.25Fe4Sb12 materials with different sintering temperatures (723 K, 773 K, 798 K, 823 K and 848 K) have been prepared by a traditional melting-quenching-annealing process coupled with spark plasma sintering (SPS) technique. The results of XRD and EPMA analysis indicate that all the SPSed samples consist of the main skutterudite phase and impurity phases of FeSb2, Sb, CeSb2 and oxides of Ce and Sb. Compared with other SPSed samples, the SPS-773 K sample has the best thermoelectric properties due to the relatively fewer impurity phases, a large number of micro-nanoscale particles at the grain boundary and more voids. The SPS-773 K sample shows the largest ZT value over the entire test temperature range due to the higher power factor and lower lattice thermal conductivity. The maximum ZT value reaches 0.81 at 800 K. This indicates that thermoelectric properties of Ce-filled Fe4Sb12 skutterudite materials can be effectively improved by reducing impurity phases induced by the optimization of the sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  3. J.-P. Fleurial, T. Caillat, A. Borshchevsky, Skutterudites: a new class of promising thermoelectric materials. AIP Conf. Proc. 316, 40–44 (1994)

    Article  Google Scholar 

  4. C. Uher, in Thermoelectric Handbooks: Macro to Nano, Chap. 34, ed. by D. Rowe (CRC Press, New York, 2006), pp. 1–17

  5. B.C. Sales, D. Mandrus, P.K. Williams, Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996)

    Article  CAS  Google Scholar 

  6. G.A. Slack, V.G. Tsoukala, Some properties of semiconducting IrSb3. J. Appl. Phys. 76, 1665–1671 (1994)

    Article  CAS  Google Scholar 

  7. G.S. Nolas, D.T. Morelli, T.M. Tritt, Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion. Annu. Rev. Mater. Res. 29, 89–116 (1999)

    CAS  Google Scholar 

  8. Y.-S. Park, T. Thompson, Y. Kim, J.R. Salvador, J.S. Sakamoto, Protective enamel coating for n- and p-type skutterudite thermoelectric materials. J. Mater. Sci. 50, 1500–1512 (2015)

    Article  CAS  Google Scholar 

  9. Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, L.D. Chen, Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater. 18, 194–213 (2016)

    Article  CAS  Google Scholar 

  10. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)

    Article  CAS  Google Scholar 

  11. W.Y. Zhao, Z.Y. Liu, Z.G. Sun, Q.J. Zhang, P. Wei, X. Mu, H.Y. Zhou, C.C. Li, S.F. Ma, D.Q. He, P.X. Ji, W.T. Zhu, X.L. Nie, X.L. Su, X.F. Tang, B.G. Shen, X.L. Dong, J.H. Yang, Y. Liu, J. Shi, Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017)

    Article  CAS  Google Scholar 

  12. W.Y. Zhao, Z.Y. Liu, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, Y.Z. Pei, Magnetoelectric interaction and transport behaviors in magnetic nanocomposite thermoelectric materials. Nat. Nanotechnol. 12, 55–60 (2017)

    Article  CAS  Google Scholar 

  13. W. Ren, H.Y. Geng, Z.H. Zhang, L.X. Zhang, Filling-fraction fluctuation leading to glasslike ultralow thermal conductivity in caged skutterudites. Phys. Rev. Lett. 118, 245901 (2017)

    Article  Google Scholar 

  14. G.J. Tan, Y. Zheng, X.F. Tang, High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Appl. Phys. Lett. 103, 183904 (2013)

    Article  Google Scholar 

  15. F. Chen, R.H. Liu, Z. Yao, Y.F. Xing, S.Q. Bai, L.D. Chen, Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J. Mater. Chem. A 6, 6772–6779 (2018)

    Article  CAS  Google Scholar 

  16. G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, C. Uher, Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. J. Mater. Chem. A 1, 12657–12668 (2013)

    Article  CAS  Google Scholar 

  17. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, L.D. Chen, High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu and Yb). J. Appl. Phys. 109, 063713 (2011)

    Article  Google Scholar 

  18. D.T. Morelli, G.P. Meisner, Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777–3781 (1995)

    Article  CAS  Google Scholar 

  19. B. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.P. Fleurial, T. Caillat, A. Borshchevsky, Low-temperature transport properties of the filled skutterudites CeFe4−xCoxSb12. Phys. Rev. B 55, 1476–1480 (1997)

    Article  CAS  Google Scholar 

  20. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, C. Uher, Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Phys. Rev. Lett. 80, 3551–3554 (1998)

    Article  CAS  Google Scholar 

  21. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, X.F. Tang, Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J. Am. Chem. Soc. 131, 3713–3720 (2009)

    Article  CAS  Google Scholar 

  22. G.J. Tan, S.Y. Wang, Y.G. Yan, H. Li, X.F. Tang, Effects of cobalt substitution for Fe on the thermoelectric properties of p-type CeFe4−xCoxSb12 skutterudites. J. Electron. Mater. 41, 1147–1152 (2012)

    Article  CAS  Google Scholar 

  23. H.Y. Zhou, X. Mu, W.Y. Zhao, D.G. Tang, P. Wei, W.T. Zhu, X.L. Nie, Q.J. Zhang, Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules. Nano Energy 40, 274–281 (2017)

    Article  CAS  Google Scholar 

  24. X. Mu, H.Y. Zhou, D.Q. He, W.Y. Zhao, P. Wei, W.T. Zhu, X.L. Nie, H.J. Liu, Q.J. Zhang, Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 film with high-crystallinity via layer-by-layer in situ Growth. Nano Energy 33, 55–64 (2017)

    Article  CAS  Google Scholar 

  25. J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, T. Hirai, Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 91, 3698–3705 (2002)

    Article  CAS  Google Scholar 

  26. C.L. Julian, Theory of heat conduction in rare-gas crystals. Phys. Rev. 137, A128–A137 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 51572210 and 51872006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyuan Liu or Wenyu Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhu, W., Nie, X. et al. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. J Mater Sci: Mater Electron 30, 12493–12499 (2019). https://doi.org/10.1007/s10854-019-01609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01609-1

Navigation