Skip to main content
Log in

Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Filled skutterudites have great potential for power generation. However, the conventional melting–quenching–annealing–sintering process requires a time-consuming annealing process to accomplish the phase transformation. A new strategy to realize the complete phase transformation in a short time is an urgent need for filled skutterudite. In this study, a modifying reactive liquid-phase sintering enabled by introducing the extra BaSb3 in the spark plasma sintering process was successfully applied to fabricate pure BaFe4Sb12 skutterudites in less than 30 h. It is found that increasing BaSb3 liquid content can effectively promote the phase transformation to BaFe4Sb12 skutterudite through accelerating the chemical reaction between the quenched mixtures during the sintering process. However, an abnormal grain growth would take place with further increasing the liquid content. An optimal ZT value of 0.62 at 800 K was achieved for the BaFe4Sb12 skutterudite due to the enhanced Seebeck coefficient and the increased electrical conductivity as well as the decreased lattice thermal conductivity induced by the single-phase composition. This work demonstrates that pure filled skutterudite with enhanced TE performance can be fabricated by the simple and efficient reactive liquid-phase sintering without longtime annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461

    Article  CAS  Google Scholar 

  2. Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328

    Article  CAS  Google Scholar 

  3. Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD (2016) Thermoelectric devices for power generation: recent progress and future challenges. Adv Energy Mater 18:194–213

    Article  CAS  Google Scholar 

  4. Qin D, Wu H, Cai S, Zhu J, Cui B, Yin L, Qin H, Shi W, Zhang Y, Zhang Q, Liu W, Cao J, Pennycook SJ, Cai W, Sui J (2019) Enhanced thermoelectric and mechanical properties in Yb0.3Co4Sb12 with in situ formed CoSi nanoprecipitates. Adv Energy Mater 9:1902435

    Article  Google Scholar 

  5. Zhang Q, Zhou Z, Dylla M, Agne MT, Pei Y, Wang L, Tang Y, Liao J, Li J, Bai S, Jiang W, Chen L, Snyder GJ (2017) Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 41:501–510

    Article  CAS  Google Scholar 

  6. Zong P, Hanus R, Dylla M, Tang Y, Liao J, Zhang Q, Snyder GJ, Chen L (2017) Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci 10:183–191

    Article  CAS  Google Scholar 

  7. Nie G, Li W, Guo J, Yamamoto A, Kimura K, Zhang X, Isaacs EB, Dravid V, Wolverton C, Kanatzidis MG, Priya S (2019) High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy 66:104193

    Article  Google Scholar 

  8. Li W, Stokes D, Poudel B, Saparamadu U, Nozariasbmarz A, Kang HB, Priya S (2019) High-efficiency skutterudite modules at a low temperature gradient. Energies 12:4292

    Article  Google Scholar 

  9. Guo JQ, Geng HY, Ochi T, Suzuki S, Kikuchi M, Yamaguchi Y, Ito S (2012) Development of skutterudite thermoelectric materials and modules. J Electron Mater 41:1036–1042

    Article  CAS  Google Scholar 

  10. Nie G, Suzuki S, Tomida T, Sumiyoshi A, Ochi T, Mukaiyama K, Kikuchi M, Guo JQ, Yamamoto A, Obara H (2017) Performance of skutterudite-based modules. J Electron Mater 46:2640–2644

    Article  CAS  Google Scholar 

  11. Yu J, Zhao W, Zhou H, Wei P, Zhang Q (2013) Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scr Mater 68:643–646

    Article  CAS  Google Scholar 

  12. Chen F, Liu R, Yao Z, Xing Y, Bai S, Chen L (2018) Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J Mater Chem A 6:6772–6779

    Article  CAS  Google Scholar 

  13. Yao Z, Qiu P-F, Li X-Y, Chen L-D (2016) Investigation on quick fabrication of n-type filled skutterudites. J Inorg Mater 31:1375–1382

    Article  Google Scholar 

  14. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846

    Article  CAS  Google Scholar 

  15. Li H, Tang X, Su X, Zhang Q (2008) Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett 92:202114

    Article  Google Scholar 

  16. Tan G, Liu W, Wang S, Yan Y, Li H, Tang X, Uher C (2013) Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. J Mater Chem A 1:12657–12668

    Article  CAS  Google Scholar 

  17. Lee S, Lee KH, Kim Y-M, Kim HS, Snyder GJ, Baik S, Kim SW (2018) Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance. Acta Mater 142:8–17

    Article  CAS  Google Scholar 

  18. Jie Q, Wang H, Liu W, Wang H, Chen G, Ren Z (2013) Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys Chem Chem Phys 15:6809–6816

    Article  CAS  Google Scholar 

  19. Yu J, Zhao WY, Wei P, Tang DG, Zhang QJ (2012) Effects of excess Sb on thermoelectric properties of barium and indium double-filled iron-based p-type skutterudite materials. J Electron Mater 41:1414–1420

    Article  CAS  Google Scholar 

  20. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39. https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  21. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348:109–114

    Article  CAS  Google Scholar 

  22. Zhang C, Mata MDL, Li Z, Belarre FJ, Arbiol J, Khor KA, Poletti D, Zhu B, Yan Q, Xiong Q (2016) Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30:630–638

    Article  CAS  Google Scholar 

  23. Zhang C, Ng H, Li Z, Khor KA, Xiong Q (2017) Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2−xTe3 nanocomposites via a liquid-phase sintering process. ACS Appl Mater Interfaces 9:12501–12510

    Article  CAS  Google Scholar 

  24. Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z, Sui J (2017) Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv Energy Mater 7:1602582

    Article  Google Scholar 

  25. Meng X, Liu Y, Cui B, Qin D, Cao J, Liu W, Liu Z, Cai W, Sui J (2018) High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. J Mater Chem A 6:20128–20137

    Article  CAS  Google Scholar 

  26. Farrer JK, Carter CB, Ravishankar N (2006) The effects of crystallography on grain-boundary migration in alumina. J Mater Sci 41:661–674. https://doi.org/10.1007/s10853-006-6482-2

    Article  CAS  Google Scholar 

  27. Valant M, Suvorov D, Pullar RC, Sarma K, Alford NM (2006) A mechanism for low-temperature sintering. J Eur Ceram Soc 26:2777–2783

    Article  CAS  Google Scholar 

  28. Yao Z, Li XY, Tang YS, Chen LD (2015) Genomic effects of the quenching process on the microstructure and thermoelectric properties of Yb0.3Co4Sb12. J Electron Mater 44:1890–1895

    Article  CAS  Google Scholar 

  29. Fisher JG, Kang S-JL (2019) Strategies and practices for suppressing abnormal grain growth during liquid phase sintering. J Am Ceram Soc 102:717–735

    CAS  Google Scholar 

  30. Lee S-H, Kim D-Y, Hwang NM (2002) Effect of anorthite liquid on the abnormal grain growth of alumina. J Eur Ceram Soc 22:317–321

    Article  CAS  Google Scholar 

  31. Katsuyama S, Kanayama Y, Ito M, Majima K, Nagai H (2000) Thermoelectric properties of CoSb3 with dispersed FeSb2 particles. J Appl Phys 88:3483–3489

    Article  Google Scholar 

  32. Saunders GA, Öktü Ö (1968) The Seebeck coefficient and the fermi surface of antimony single crystals. J Phys Chem Solids 29:327–333

    Article  CAS  Google Scholar 

  33. Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Filled skutterudite antimonides: electron crystals and phonon glasses. Phys Rev B Condens Matter 56:15081–15089

    Article  CAS  Google Scholar 

  34. Qiu PF, Yang J, Liu RH, Shi X, Huang XY, Snyder GJ, Zhang W, Chen LD (2011) High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J Appl Phys 109:063713

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning Program of Jiangxi Provincial Education Department (GJJ180916).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yu or Wenyu Zhao.

Ethics declarations

Conflict of interest

There are no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhu, W., Zhao, W. et al. Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. J Mater Sci 55, 7432–7440 (2020). https://doi.org/10.1007/s10853-020-04523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04523-8

Navigation