Skip to main content
Log in

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Separation and Purification Technology, 2020, 235(18): 116213

    Article  CAS  Google Scholar 

  2. Randazzo A, Asensio-Ramos M, Melián G V, Venturi S, Padrón E, Hernández P A, Pérez N M, Tassi F. Volatile organic compounds (VOCs) in solid waste landfill cover soil: chemical and isotopic composition vs. degradation processes. Science of the Total Environment, 2020, 726(15): 138326

    Article  CAS  PubMed  Google Scholar 

  3. Ajmal Z, Naciri Y, Ahmad M, Hsini A, Bouziani A, Laabd M, Raza W, Murtaza A, Kumar A, Ullah S, Al-Sehemi A G, Al-Ghamdi A A, Qadeer A, Hayat A, Djellabi R. Use of conductive polymer-supported oxide-based photocatalysts for efficient VOCs & SVOCs removal in gas/liquid phase. Journal of Environmental Chemical Engineering, 2022, 11(1): 108935

    Article  Google Scholar 

  4. Ghavami M, Aghbolaghy M, Soltan J, Chen N. Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides. Frontiers of Chemical Science and Engineering, 2020, 14(6): 937–947

    Article  CAS  Google Scholar 

  5. Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmospheric Environment, 2016, 140: 117–134

    Article  CAS  Google Scholar 

  6. Zhou L, Zhang B, Li Z, Zhang X, Liu R, Yun J. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Molecular Catalysis, 2020, 489: 110920

    Article  CAS  Google Scholar 

  7. Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 2019, 82: 70–74

    Article  CAS  PubMed  Google Scholar 

  8. Dolai S, Bhunia S K, Beglaryan S S, Kolusheva S, Zeiri L, Jelinek R. Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs). ACS Applied Materials & Interfaces, 2017, 9(3): 2891–2898

    Article  CAS  Google Scholar 

  9. Salar-García M J, Ortiz-Martínez V M, Hernández-Fernández F J, de los Ríos A P, Quesada-Medina J. Ionic liquid technology to recover volatile organic compounds (VOCs). Journal of Hazardous Materials, 2017, 321(5): 484–499

    Article  PubMed  Google Scholar 

  10. Zhang W, Li G, Yin H, Zhao K, Zhao H, An T. Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: recent progress and challenges. Environmental Science: Nano, 2022, 9(1): 81–104

    Article  CAS  Google Scholar 

  11. Gelles T, Krishnamurthy A, Adebayo B, Rownaghi A, Rezaei F. Abatement of gaseous volatile organic compounds: a material perspective. Catalysis Today, 2020, 350(15): 3–18

    Article  CAS  Google Scholar 

  12. Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synthesis, characterization, and applications. Catalysis Science & Technology, 2021, 11(16): 5374–5387

    Article  CAS  Google Scholar 

  13. Hu C, Zhu Q, Jiang Z, Chen L, Wu R. Catalytic combustion of dilute acetone over Cu-doped ceria catalysts. Chemical Engineering Journal, 2009, 152(2): 583–590

    Article  CAS  Google Scholar 

  14. Han Y, Wang Y, Chai F, Ma J, Li L. Biofilters for the co-treatment of volatile organic compounds and odors in a domestic waste landfill site. Journal of Cleaner Production, 2020, 277(20): 124012

    Article  CAS  Google Scholar 

  15. Alharbi N S, Hu B, Hayat T, Rabah S O, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135

    Article  CAS  Google Scholar 

  16. Lee J E, Ok Y S, Tsang D C W, Song J, Jung S, Park Y. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: a critical review. Science of the Total Environment, 2020, 719(1): 137405

    Article  CAS  PubMed  Google Scholar 

  17. Shrubsole C, Dimitroulopoulou S, Foxall K, Gadeberg B, Doutsi A. IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Building and Environment, 2019, 165: 106382

    Article  Google Scholar 

  18. Zhang X, Gao B, Fang J, Zou W, Dong L, Cao C, Zhang J, Li Y, Wang H. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 2019, 218: 680–686

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Xu X, Zhao S, Meng X, Xiao F. Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catalysis Today, 2022, 410(5): 56–67

    Google Scholar 

  20. Huang X, Han D, Cheng J, Chen X, Zhou Y, Liao H, Dong W, Yuan C. Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai. Environmental Science and Pollution Research International, 2020, 27(1): 490–499

    Article  CAS  PubMed  Google Scholar 

  21. Liao W, Liang Z, Yu Y, Li G, Li Y, An T. Pollution profiles, removal performance and health risk reduction of malodorous volatile organic compounds emitted from municipal leachate treating process. Journal of Cleaner Production, 2021, 315(15): 128141

    Article  CAS  Google Scholar 

  22. Li R, Yuan J, Li X, Zhao S, Lu W, Wang H, Zhao Y. Health risk assessment of volatile organic compounds (VOCs) emitted from landfill working surface via dispersion simulation enhanced by probability analysis. Environmental Pollution, 2023, 316(1): 120535

    Article  CAS  PubMed  Google Scholar 

  23. Paciência I, Madureira J, Rufo J, Moreira A, Fernandes E. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. Journal of Toxicology and Environmental Health: Part B, 2016, 19(2): 47–64

    Article  Google Scholar 

  24. Xuan L, Ma Y, Xing Y, Meng Q, Song J, Chen T, Wang H, Wang P, Zhang Y, Gao P. Source, temporal variation and health risk of volatile organic compounds (VOCs) from urban traffic in harbin, China. Environmental Pollution, 2021, 270(1): 116074

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Niu Y, Su H, Qi Y. Simple thermocatalytic oxidation degradation of VOCs. Catalysis Letters, 2022, 152(6): 1801–1818

    Article  CAS  Google Scholar 

  26. Zhang Y, Qi J, Sun Y, Zhu Z, Wang C, Sun X, Li J. Anchoring nanosized MOFs at the interface of porous millimeter beads and their enhanced adsorption mechanism for VOCs. Journal of Cleaner Production, 2022, 353(15): 131631

    Article  CAS  Google Scholar 

  27. Shen X, Du X, Yang D, Ran J, Yang Z, Chen Y. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729

    Article  CAS  Google Scholar 

  28. Chen B, Dai Y, Ruan X, Xi Y, He G. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation. Frontiers of Chemical Science and Engineering, 2018, 12(2): 296–305

    Article  Google Scholar 

  29. Cabanes A, Fullana A. New methods to remove volatile organic compounds from post-consumer plastic waste. Science of the Total Environment, 2021, 758(1): 144066

    Article  CAS  PubMed  Google Scholar 

  30. Yan Y, Wang M, Jin B, Yang J, Li S. Performance evaluation and microbial community analysis of the biofilter for removing grease and volatile organic compounds in the kitchen exhaust fume. Bioresource Technology, 2021, 319: 124132

    Article  CAS  PubMed  Google Scholar 

  31. Salazar Gómez J I, Lohmann H, Krassowski J. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption. Chemosphere, 2016, 153: 48–57

    Article  PubMed  Google Scholar 

  32. Li P, Kim S, Jin J, Do H C, Park J H. Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Applied Catalysis B: Environmental, 2020, 263: 118284

    Article  CAS  Google Scholar 

  33. Zhu L, Shen D, Luo K. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. Journal of Hazardous Materials, 2020, 389(5): 122102

    Article  CAS  PubMed  Google Scholar 

  34. Yan Y, Huang P, Zhang H. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(4): 772–783

    Article  CAS  Google Scholar 

  35. Bo L, Sun S. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392

    Article  CAS  Google Scholar 

  36. Wang Y, Dou Y, Wu Z, Tian Y, Xiong Y, Zhao J, Fang D, Huang F, Cheng Y, Zhong J. Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) electrodes with enhanced conductivity and transparency for semitransparent perovskite solar cells. Frontiers of Chemical Science and Engineering, 2023, 17(2): 206–216

    Article  CAS  Google Scholar 

  37. Ye C, Fang T, Long X, Wang H, Chen S, Zhou J. Non-thermal plasma synthesis of supported Cu–Mn–Ce mixed oxide catalyst towards highly improved catalytic performance for volatile organic compound oxidation. Environmental Science and Pollution Research International, 2022, 30(5): 11994–12004

    Article  PubMed  Google Scholar 

  38. Krichevskaya M, Preis S, Moiseev A, Pronina N, Deubener J. Gas-phase photocatalytic oxidation of refractory VOCs mixtures: through the net of process limitations. Catalysis Today, 2017, 280(1): 93–98

    Article  CAS  Google Scholar 

  39. Zhang J, Hu Y, Qin J, Yang Z, Fu M. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chemical Engineering Journal, 2020, 385(1): 123814

    Article  CAS  Google Scholar 

  40. Wang Y, Ding L, Shi Q, Liu S, Qian L, Yu Z, Wang H, Lei J, Gao Z, Long H, Charles Xu C. Volatile organic compounds (VOC) emissions control in iron ore sintering process: recent progress and future development. Chemical Engineering Journal, 2022, 448(15): 137601

    Article  CAS  Google Scholar 

  41. Wang Q, Yeung K L, Bañares M A. Ceria and its related materials for VOC catalytic combustion: a review. Catalysis Today, 2020, 356(1): 141–154

    Article  CAS  Google Scholar 

  42. Lu C, Wey M. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas. Fuel Processing Technology, 2007, 88(6): 557–567

    Article  CAS  Google Scholar 

  43. Hermia J, Vigneron S. Catalytic incineration for odour abatement and VOC destruction. Catalysis Today, 1993, 17(1–2): 349–358

    Article  CAS  Google Scholar 

  44. Abidi M, Hajjaji A, Bouzaza A, Trablesi K, Makhlouf H, Rtimi S, Assadi A, Bessais B. Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: competition effect and kinetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400(1): 112722

    Article  CAS  Google Scholar 

  45. Kim S, Kirakosyan A, Choi J, Kim J H. Detection of volatile organic compounds (VOCs), aliphatic amines, using highly fluorescent organic-inorganic hybrid perovskite nanoparticles. Dyes and Pigments, 2017, 147: 1–5

    Article  CAS  Google Scholar 

  46. Campesi M A, Luzi C D, Barreto G F, Martínez O M. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration. Journal of Environmental Management, 2015, 154(1): 216–224

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Li Y, Sun Y, Wang W, Shao Z. Perovskite oxides in catalytic combustion of volatile organic compounds: recent advances and future prospects. Energy & Environmental Materials, 2021, 5(3): 751–776

    Article  Google Scholar 

  48. Ribeiro B M, Pinto J F, Suppino R S, Marçola L, Landers R, Tomaz E. Catalytic oxidation at pilot-scale: efficient degradation of volatile organic compounds in gas phase. Journal of Hazardous Materials, 2019, 365(5): 581–589

    Article  CAS  PubMed  Google Scholar 

  49. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 2019, 119(7): 4471–4568

    Article  CAS  PubMed  Google Scholar 

  50. Li K, Luo X. Research progress on catalytic combustion of volatile organic compounds in industrial waste gas. Catalysts, 2023, 13(2): 268

    Article  Google Scholar 

  51. Hosono Y, Saito H, Higo T, Watanabe K, Ito K, Tsuneki H, Maeda S, Hashimoto K, Sekine Y. Co-CeO2 interaction induces the Mars-van Krevelen mechanism in dehydrogenation of ethane. Journal of Physical Chemistry C, 2021, 125(21): 11411–11418

    Article  CAS  Google Scholar 

  52. Liu J, Li X, Li R, Zhao Q, Ke J, Xiao H, Wang L, Liu S, Tadé M, Wang S. Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NOx by NH3. Applied Catalysis A: General, 2018, 549(5): 289–301

    Article  CAS  Google Scholar 

  53. Song L, Yue H, Ma K, Liu W, Tian W, Liu C, Tang S, Liang B. FeSTi superacid catalyst for NH3-SCR with superior resistance to metal poisons in flue gas. ACS Sustainable Chemistry & Engineering, 2020, 8(45): 16878–16888

    Article  CAS  Google Scholar 

  54. Toko K, Ito K, Saito H, Hosono Y, Murakami K, Misaki S, Higo T, Ogo S, Tsuneki H, Maeda S, Hashimoto K, Nakai H, Sekine Y. Catalytic dehydrogenation of ethane over doped perovskite via the Mars-van Krevelen mechanism. Journal of Physical Chemistry C, 2020, 124(19): 10462–10469

    Article  CAS  Google Scholar 

  55. Cheng M, Jiang B, Yao S, Han J, Zhao S, Tang X, Zhang J, Wang T. Mechanism of NH3 selective catalytic reduction reaction for NOx removal from diesel engine exhaust and hydrothermal stability of Cu–Mn/zeolite catalysts. Journal of Physical Chemistry C, 2018, 122(1): 455–464

    Article  CAS  Google Scholar 

  56. Yue S, Wu C, Li K. A new insight on the NO-CO reaction at the electronic level: homogeneous, E–R, and L–H mechanisms. Journal of Molecular Modeling, 2022, 29(1): 26

    Article  PubMed  Google Scholar 

  57. Kong J, Yang T, Rui Z, Ji H. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives. Catalysis Today, 2019, 327(1): 47–63

    Article  CAS  Google Scholar 

  58. Fu Z, Liu L, Song Y, Ye Q, Cheng S, Kang T, Dai H. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: effect of Pd loading. Frontiers of Chemical Science and Engineering, 2017, 11(2): 185–196

    Article  CAS  Google Scholar 

  59. Rastegarpanah A, Meshkani F, Liu Y, Deng J, Jing L, Pei W, Zhang K, Hou Z, Han Z, Rezaei M, Dai H. Toluene oxidation over the M–Al (M = Ce, La, Co, Ce–La, and Ce–Co) catalysts derived from the modified “One-Pot” evaporation-induced self-assembly method: effects of microwave or ultrasound irradiation and noble-metal loading on catalytic activity and stability. Industrial & Engineering Chemistry Research, 2020, 59(13): 5624–5635

    Article  CAS  Google Scholar 

  60. Carabineiro S A C, Chen X, Martynyuk O, Bogdanchikova N, Avalos-Borja M, Pestryakov A, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244(15): 103–114

    Article  CAS  Google Scholar 

  61. Yang H, Deng J, Xie S, Jiang Y, Dai H, Au C T. Au/MnOx/3DOM SiO2: highly active catalysts for toluene oxidation. Applied Catalysis A: General, 2015, 507: 139–148

    Article  CAS  Google Scholar 

  62. Lou B Z, Shakoor N, Adeel M, Zhang P, Huang L L, Zhao Y W, Zhao W C, Jiang Y Q, Rui Y K. Catalytic oxidation of volatile organic compounds by non-noble metal catalyst: current advancement and future prospectives. Journal of Cleaner Production, 2022, 363(20): 132523

    Article  CAS  Google Scholar 

  63. Voorhoeve R J H, Johnson D W Jr, Remeika J P, Gallagher P K. Perovskite oxides: materials science in catalysis. Science, 1977, 195(4281): 827–833

    Article  CAS  PubMed  Google Scholar 

  64. De K S, Balasubramanian M R. Cubic hypovanadate perovskite as an oxidation catalyst. Journal of Catalysis, 1983, 81(2): 482–484

    Article  Google Scholar 

  65. Irusta S, Pina M P, Menéndez M, Santamaría J. Development and application of perovskite - based catalytic membrane reactors. Catalysis Letters, 1998, 54(1): 69–78

    Article  CAS  Google Scholar 

  66. Sun Y, Liu Z, Zhang W, Chu X, Cong Y, Huang K, Feng S. Unfolding B–O–B bonds for an enhanced ORR performance in ABO3 - type perovskites. Small, 2019, 15(29): 1803513

    Article  Google Scholar 

  67. Wang S, Xu X, Zhu J, Tang D, Zhao Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. Journal of Rare Earths, 2019, 37(9): 970–977

    Article  CAS  Google Scholar 

  68. Capdevila-Cortada M. Describing perovskite catalysts. Nature Catalysis, 2018, 1(10): 737

    Article  Google Scholar 

  69. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catalysis, 2014, 4(9): 2917–2940

    Article  CAS  Google Scholar 

  70. Jia T, Zeng Z, Lin H Q, Duan Y, Ohodnicki P. First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La, Sr, B = Fe, Co) perovskites. RSC Advances, 2017, 7(62): 38798–38804

    Article  CAS  Google Scholar 

  71. Zhao Q, Zheng Y, Song C, Liu Q, Ji N, Ma D, Lu X. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Applied Catalysis B: Environmental, 2020, 265(15): 118552

    Article  CAS  Google Scholar 

  72. Lee J G, Naden A B, Savaniu C D, Connor P A, Payne J L M, Skelton J, Gibbs A S, Hui J C, Parker S, Irvine J T S. Use of interplay between A-site non-stoichiometry and hdroxide doping to deliver novel proton-conducting perovskite oxides. Advanced Energy Materials, 2021, 11(37): 2101337

    Article  CAS  Google Scholar 

  73. Ji Q, Bi L, Zhang J, Cao H, Zhao X. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & Environmental Science, 2020, 13(5): 1408–1428

    Article  CAS  Google Scholar 

  74. Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485

    Article  CAS  Google Scholar 

  75. Hwang J, Feng Z, Charles N, Wang X, Lee D, Stoerzinger K A, Muy S, Rao R R, Lee D, Jacobs R, Morgan D, Shao-Horn Y. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31: 100–118

    Article  CAS  Google Scholar 

  76. Neha P R, Prasad R, Singh S V. Singh S V. A review on catalytic oxidation of soot emitted from diesel fuelled engines. Journal of Environmental Chemical Engineering, 2020, 8(4): 103945

    Article  CAS  Google Scholar 

  77. Wu Z, Wang L, Hu Y, Han H, Li X, Wang Y. The preparation, characterization, and catalytic performance of porous fibrous LaFeO3 perovskite made from a sunflower seed shell template. Frontiers of Chemical Science and Engineering, 2020, 14(6): 967–975

    Article  CAS  Google Scholar 

  78. Polo-Garzon F, Wu Z. Acid-base catalysis over perovskites: a review. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(7): 2877–2894

    Article  CAS  Google Scholar 

  79. Dai Z, Li D, Ao Z, Wang S, An T. Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation. Journal of Hazardous Materials, 2021, 405(5): 124684

    Article  CAS  PubMed  Google Scholar 

  80. Retuerto M, Calle-Vallejo F, Pascual L, Lumbeeck G, Fernandez-Diaz M T, Croft M, Gopalakrishnan J, Peña M A, Hadermann J, Greenblatt M, Rojas S. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity. ACS Applied Materials & Interfaces, 2019, 11(24): 21454–21464

    Article  CAS  Google Scholar 

  81. Li C, Wang Y, Jin C, Lu J, Sun J, Yang R. Prepation of perovskite oxides/(CoFe)P2 heterointerfaces to improve oxygen evolution activity of La0.8Sr1.2Co0.2Fe0.8O4+δ layered perovskite oxide. International Journal of Hydrogen Energy, 2020, 45(43): 22959–22964

    Article  CAS  Google Scholar 

  82. van der Vaart D R, Marchand E G, Bagely-Pride A. Thermal and catalytic incineration of volatile organic compounds. Critical Reviews in Environmental Science and Technology, 1994, 24(3): 203–236

    Article  Google Scholar 

  83. Zheng Y, Chen Y, Wu E, Liu X, Huang B, Xue H, Cao C, Luo Y, Qian Q, Chen Q. Amorphous boron dispersed in LaCoO3 with large oxygen vacancies for efficient catalytic propane oxidation. Chemistry, 2021, 27(14): 4738–4745

    Article  CAS  PubMed  Google Scholar 

  84. Cheng Q, Kang K, Li Y, Wang J, Wang Z, Selishchev D, Wang X, Zhang G. Achieving efficient toluene mineralization over ordered porous LaMnO3 catalyst: the synergistic effect of high valence manganese and surface lattice oxygen. Applied Surface Science, 2023, 615(1): 156248

    Article  CAS  Google Scholar 

  85. Giroir-Fendler A, Alves-Fortunato M, Richard M, Wang C, Díaz J A, Gil S, Zhang C, Can F, Bion N, Guo Y. Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180: 29–37

    Article  CAS  Google Scholar 

  86. Meng Q, Wang W, Weng X, Liu Y, Wang H, Wu Z. Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. Journal of Physical Chemistry C, 2016, 120(6): 3259–3266

    Article  CAS  Google Scholar 

  87. Weng X, Wang W, Meng Q, Wu Z. An ultrafast approach for the syntheses of defective nanosized lanthanide perovskites for catalytic toluene oxidation. Catalysis Science & Technology, 2018, 8(17): 4364–4372

    Article  CAS  Google Scholar 

  88. Pan K, Pan G, Chong S, Chang M. Removal of VOCs from gas streams with double perovskite-type catalysts. Journal of Environmental Sciences (China), 2018, 69: 205–216

    Article  CAS  PubMed  Google Scholar 

  89. Chen H, Cui W, Li D, Tian Q, He J, Liu Q, Chen X, Cui M, Qiao X, Zhang Z, Tang J, Fei Z. Selectively etching lanthanum to engineer surface cobalt-enriched LaCoO3 perovskite catalysts for toluene combustion. Industrial & Engineering Chemistry Research, 2020, 59(23): 10804–10812

    Article  CAS  Google Scholar 

  90. Liu L, Sun J, Ding J, Zhang Y, Jia J, Sun T. Catalytic oxidation of VOCs over SmMnO3 perovskites: catalyst synthesis, change mechanism of active species, and degradation path of toluene. Inorganic Chemistry, 2019, 58(20): 14275–14283

    Article  CAS  PubMed  Google Scholar 

  91. Rousseau S, Loridant S, Delichere P, Boreave A, Deloume J P, La Vernoux. P1−xSrxCo1−yFeyO3 perovskites prepared by sol–gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Applied Catalysis B: Environmental, 2009, 88(3): 438–447

    Article  CAS  Google Scholar 

  92. Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. Journal of Catalysis, 2012, 287: 149–160

    Article  CAS  Google Scholar 

  93. Jiang Y, Xie S, Yang H, Deng J, Liu Y, Dai H. Mn3O4−Au/3DOM La0.6Sr0.4CoO3: high-performance catalysts for toluene oxidation. Catalysis Today, 2017, 281(3): 437–446

    Article  CAS  Google Scholar 

  94. Zhang J, Tan D, Meng Q, Weng X, Wu Z. Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Applied Catalysis B: Environmental, 2015, 172–173: 18–26

    Article  Google Scholar 

  95. Xiao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation. ChemCatChem, 2014, 6(6): 1774–1781

    Article  CAS  Google Scholar 

  96. Jing Y, Aluru N R. The role of A-site ion on proton diffusion in perovskite oxides (ABO3). Journal of Power Sources, 2020, 445(1): 227327

    Article  CAS  Google Scholar 

  97. Xiao P, Xu X, Zhu J, Zhu Y. In situ generation of perovskite oxides and carbon composites: a facile, effective and generalized route to prepare catalysts with improved performance. Journal of Catalysis, 2020, 383: 88–96

    Article  CAS  Google Scholar 

  98. Sim Y, Kwon D, An S, Ha J, Oh T S, Jung J C. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Molecular Catalysis, 2020, 489: 110925

    Article  CAS  Google Scholar 

  99. Liu L, Li J, Zhang H, Li L, Zhou P, Meng X, Guo M, Jia J, Sun T. In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. Journal of Hazardous Materials, 2019, 362(15): 178–186

    Article  CAS  PubMed  Google Scholar 

  100. Huang H, Liu Y, Tang W, Chen Y. Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion. Catalysis Communications, 2008, 9(1): 55–59

    Article  CAS  Google Scholar 

  101. Liu Y, Dai H, Deng J, Zhang L, Zhao Z, Li X, Wang Y, Xie S, Yang H, Guo G. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation. Inorganic Chemistry, 2013, 52(15): 8665–8676

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Applied Catalysis B: Environmental, 2012, 119–120(30): 20–31

    Article  Google Scholar 

  103. Pereñíguez R, Hueso J L, Holgado J P, Gaillard F, Caballero A. Reactivity of LaNi1−yCoyO3−δ perovskite systems in the deep oxidation of toluene. Catalysis Letters, 2009, 131(1): 164–169

    Article  Google Scholar 

  104. Ding Y, Wang S, Zhang L, Chen Z, Wang M, Wang S. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane. Catalysis Communications, 2017, 97: 88–92

    Article  CAS  Google Scholar 

  105. Zhou Y, Lu H, Zhang H, Chen Y. Catalytic properties of LaBO3 perovskite catalysts in VOCs combustion. China Environmental Science, 2012, 32: 1772–1777 (in Chinese)

    CAS  Google Scholar 

  106. Wu M, Chen S, Xiang W. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chemical Engineering Journal, 2020, 387: 124101

    Article  CAS  Google Scholar 

  107. Oshima T, Yokoi T, Eguchi M, Maeda K. Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden-Popper phase layered perovskite. Dalton Transactions, 2017, 46(32): 10594–10601

    Article  CAS  PubMed  Google Scholar 

  108. Liu S, Sun C, Chen J, Xiao J, Luo J. A high-performance Ruddlesden-Popper perovskite for bifunctional oxygen electrocatalysis. ACS Catalysis, 2020, 10(22): 13437–13444

    Article  CAS  Google Scholar 

  109. Du X, Zou G, Wang X. Low-temperature synthesis of Ruddlesden-Popper type layered perovskite LaxCa3−xMn2O7 for methane combustion. Catalysis Surveys from Asia, 2015, 19(1): 17–24

    Article  CAS  Google Scholar 

  110. Wu M, Li H, Ma S, Chen S, Xiang W. Boosting the surface oxygen activity for high performance iron-based perovskite oxide. Science of the Total Environment, 2021, 795(15): 148904

    Article  CAS  PubMed  Google Scholar 

  111. Pogue E A, Bond J, Imperato C, Abraham J B S, Drichko N, McQueen T M. A gold(I) oxide double perovskite: Ba2AuIO6. Journal of the American Chemical Society, 2021, 143(45): 19033–19042

    Article  CAS  PubMed  Google Scholar 

  112. Kumar U, Upadhyay S, Alvi P A. Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Physica B: Condensed Matter, 2021, 604(1): 412708

    Article  CAS  Google Scholar 

  113. Schön A, Dacquin J P, Dujardin C, Granger P. Catalytic activity and thermal stability of LaFe1−xCuxO3 and La2CuO4 perovskite solids in three-way-catalysis. Topics in Catalysis, 2017, 60(3): 300–306

    Article  Google Scholar 

  114. Du X, Zou G, Zhang Y, Wang X. A novel strategy for low-temperature synthesis of Ruddlesden-Popper type layered perovskite La3Mn2O7+δ for methane combustion. Journal of Materials Chemistry A, 2013, 1(29): 8411–8416

    Article  CAS  Google Scholar 

  115. Wang Y, Xue Y, Zhao C, Zhao D, Liu F, Wang K, Dionysiou D D. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies. Chemical Engineering Journal, 2016, 300(15): 300–305

    Article  CAS  Google Scholar 

  116. Niu J, Deng J, Liu W, Zhang L, Wang G, Dai H, He H, Zi X. Nanosized perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate. Catalysis Today, 2007, 126(3): 420–429

    Article  CAS  Google Scholar 

  117. Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307: 327–339

    Article  CAS  Google Scholar 

  118. Pérez H A, López C A, Cadús L E, Agüero F N. Catalytic feasibility of Ce-doped LaCoO3 systems for chlorobenzene oxidation: an analysis of synthesis method. Journal of Rare Earths, 2021, 40(6): 897–905

    Article  Google Scholar 

  119. He F, Chen J, Liu S, Huang Z, Wei G, Wang G, Cao Y, Zhao K. La1−xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: identification of the surface elements and redox cyclic performance. International Journal of Hydrogen Energy, 2019, 44(21): 10265–10276

    Article  CAS  Google Scholar 

  120. Liu M, Yang X, Tian Z, Wang H, Yin L, Chen J, Guan Q, Yang H, Zhang Q. Insights into the role of strontium in catalytic combustion of toluene over La1−xSrxCoO3 perovskite catalysts. Physical Chemistry Chemical Physics, 2022, 24(6): 3686–3694

    Article  CAS  PubMed  Google Scholar 

  121. Zhang C, Wang C, Zhan W, Guo Y, Guo Y, Lu G, Baylet A, Giroir-Fendler A. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129: 509–516

    Article  CAS  Google Scholar 

  122. Shao J, Zeng G, Li Y. Effect of Zn substitution to a LaNiO3−δ perovskite structured catalyst in ethanol steam reforming. International Journal of Hydrogen Energy, 2017, 42(27): 17362–17375

    Article  CAS  Google Scholar 

  123. Zhang F, Zhang X, Jiang G, Li N, Hao Z, Qu S. H2S selective catalytic oxidation over Ce substituted La1−xCexFeO3 perovskite oxides catalyst. Chemical Engineering Journal, 2018, 348(15): 831–839

    Article  CAS  Google Scholar 

  124. Gao S, Liu N, Liu J, Chen W, Liang X, Yuan Y. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1−xMnxO3 perovskites: effect of the partial substitution of Co by Mn. Fuel, 2020, 261(1): 116415

    Article  CAS  Google Scholar 

  125. Seguel J, Leal E, Zarate X, Saavedra-Torres M, Schott E, Díaz de León J N, Blanco E, Escalona N, Pecchi G, Sepúlveda C. Conversion of levulinic acid over Ag substituted LaCoO3 perovskite. Fuel, 2021, 301(1): 121071

    Article  CAS  Google Scholar 

  126. Liu Y, Siron M, Lu D, Yang J, dos Reis R, Cui F, Gao M, Lai M, Lin J, Kong Q, Lei T, Kang J, Jin J, Ciston J, Yang P. Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden-Popper perovskite phase. Journal of the American Chemical Society, 2019, 141(33): 13028–13032

    Article  CAS  PubMed  Google Scholar 

  127. Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chemical Communications, 2018, 54(50): 6484–6502

    Article  CAS  PubMed  Google Scholar 

  128. Zhao L, Huang Y, Zhang J, Jiang L, Wang Y. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chemical Engineering Journal, 2020, 397(1): 125419

    Article  CAS  Google Scholar 

  129. Liu Y, Deng J, Xie S, Wang Z, Dai H. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016, 37(8): 1193–1205

    Article  CAS  Google Scholar 

  130. Feng C, Gao Q, Xiong G, Chen Y, Pan Y, Fei Z, Li Y, Lu Y, Liu C, Liu Y. Defect engineering technique for the fabrication of LaCoO3 perovskite catalyst via urea treatment for total oxidation of propane. Applied Catalysis B: Environmental, 2022, 304: 121005

    Article  CAS  Google Scholar 

  131. Dai L, Lu X, Chu G, He C, Zhan W, Zhou G. Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Metals, 2021, 40(3): 555–562

    Article  CAS  Google Scholar 

  132. Yang Q, Wang D, Wang C, Li X, Li K, Peng Y, Li J. Facile surface improvement method for LaCoO3 for toluene oxidation. Catalysis Science & Technology, 2018, 8(12): 3166–3173

    Article  CAS  Google Scholar 

  133. Yang J, Shi L, Li L, Fang Y, Pan C, Zhu Y, Liang Z, Hoang S, Li Z, Guo Y. Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catalysis Today, 2021, 376(15): 168–176

    Article  CAS  Google Scholar 

  134. Zhang H, Gao X, Gong B, Shao S, Tu C, Pan J, Wang Y, Dai Q, Guo Y, Wang X. Catalytic combustion of CVOCs over MoOx/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 310(15): 121240

    Article  CAS  Google Scholar 

  135. Lee D, Tan J, Chae K H, Jeong B, Soon A, Ahn S J, Kim J, Moon J. Chemically driven enhancement of oxygen reduction electrocatalysis in supported perovskite oxides. Journal of Physical Chemistry Letters, 2017, 8(1): 235–242

    Article  CAS  PubMed  Google Scholar 

  136. Feng X, Qu Z, Gao H. Premixed lean methane/air combustion in a catalytic porous foam burner supported with perovskite LaMn0.4Co0.6O3 catalyst with different support materials and pore densities. Fuel Processing Technology, 2016, 150: 117–125

    Article  CAS  Google Scholar 

  137. Gao B, Deng J, Liu Y, Zhao Z, Li X, Wang Y, Dai H. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chinese Journal of Catalysis, 2013, 34(12): 2223–2229

    Article  CAS  Google Scholar 

  138. Wang Y, Xie S, Deng J, Deng S, Wang H, Yan H, Dai H. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene. ACS Applied Materials & Interfaces, 2014, 6(20): 17394–17401

    Article  CAS  Google Scholar 

  139. Huang J, Wang K, Huang X, Huang J. Deep oxidation of benzene over LaCoO3 catalysts synthesized via a salt-assisted sol-gel process. Molecular Catalysis, 2020, 493: 111073

    Article  CAS  Google Scholar 

  140. Luo Y, Zuo J, Lin D, Qian Q, Zheng Y, Feng X, Huang B, Chen Q. Anchoring Pt on surface/bulk of LaCoO3 nanotubes via one step of coaxial electrospinning for efficient total propane oxidation. Molecular Catalysis, 2019, 475: 110504

    Article  CAS  Google Scholar 

  141. Zheng Y, Feng X, Lin D, Wu E, Luo Y, You Y, Huang B, Qian Q, Chen Q. Insights into the low-temperature synthesis of LaCoO3 derived from Co(CH3COO)2 via electrospinning for catalytic propane oxidation. Chinese Journal of Chemistry, 2020, 38(2): 144–150

    Article  CAS  Google Scholar 

  142. Li M, Zhang C, Fan L, Lian Y, Niu X, Zhu Y. Enhanced catalytic oxidation of toluene over manganese oxide modified by lanthanum with a coral-like hierarchical structure nanosphere. ACS Applied Materials & Interfaces, 2021, 13(8): 10089–10100

    Article  CAS  Google Scholar 

  143. Miniajluk N, Trawczyński J, Zawadzki M. Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: effect of solvent diols. Applied Catalysis A: General, 2017, 531: 119–128

    Article  CAS  Google Scholar 

  144. Yang J, Hu S, Shi L, Hoang S, Yang W, Fang Y, Liang Z, Pan C, Zhu Y, Li L, Wu J, Hu J, Guo Y. Oxygen vacancies and Lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides. Environmental Science & Technology, 2021, 55(13): 9243–9254

    Article  CAS  Google Scholar 

  145. Roozbahani H, Maghsoodi S, Raei B, Kootenaei A S, Azizi Z. Effects of catalyst preparation methods on the performance of La2MMnO6 (M = Co, Ni) double perovskites in catalytic combustion of propane. Korean Journal of Chemical Engineering, 2022, 39(3): 586–595

    Article  CAS  Google Scholar 

  146. Doroftei C, Leontie L. Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Advances, 2017, 7(45): 27863–27871

    Article  CAS  Google Scholar 

  147. Chen H, Wei G, Liang X, Liu P, Xi Y, Zhu J. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching. Catalysis Science & Technology, 2020, 10(17): 5829–5839

    Article  CAS  Google Scholar 

  148. Li X, Dai H, Deng J, Liu Y, Zhao Z, Wang Y, Yang H, Au C T. In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Applied Catalysis A: General, 2013, 458(10): 11–20

    Article  CAS  Google Scholar 

  149. Wang S, Zhu J, Carabineiro S A C, Xiao P, Zhu Y. Selective etching of in-situ formed La2O3 particles to prepare porous LaCoO3 perovskite for catalytic combustion of ethyl acetate. Applied Catalysis A: General, 2022, 635: 118554

    Article  CAS  Google Scholar 

  150. Lu Y, Dai Q, Wang X. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts. Catalysis Communications, 2014, 54: 114–117

    Article  CAS  Google Scholar 

  151. He C, Yu Y, Shen Q, Chen J, Qiao N. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Applied Surface Science, 2014, 297: 59–69

    Article  CAS  Google Scholar 

  152. Zhang C, Hua W, Wang C, Guo Y, Guo Y, Lu G, Baylet A, Giroir-Fendler A. The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134–135: 310–315

    Article  Google Scholar 

  153. Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde J L, Giroir-Fendler A. Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Applied Catalysis B: Environmental, 2017, 201: 552–560

    Article  CAS  Google Scholar 

  154. Cetin E, Odabasi M, Seyfioglu R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Science of the Total Environment, 2003, 312(1): 103–112

    Article  CAS  PubMed  Google Scholar 

  155. Liu R, Chen J, Li G, An T. Using an integrated decontamination technique to remove VOCs and attenuate health risks from an e-waste dismantling workshop. Chemical Engineering Journal, 2017, 318(15): 57–63

    Article  CAS  Google Scholar 

  156. Shayegan Z, Haghighat F, Lee C S. Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: a trap and remove strategy to enhance the VOC removal from indoor air environment. Chemical Engineering Journal, 2020, 401(1): 125932

    Article  CAS  Google Scholar 

  157. Zhang Z, Kong Z, Liu H, Chen Y. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate. Frontiers of Chemical Science and Engineering, 2014, 8(1): 87–94

    Article  CAS  Google Scholar 

  158. Stanchovska S, Markov P, Tenchev K, Stoyanova R, Zhecheva E, Naydenov A. Preparation and characterization of palladium containing nickel-iron-cobalt perovskite catalysts for the complete oxidation of C1–C6 alkanes. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(2): 931–942

    Article  CAS  Google Scholar 

  159. Chang H, Bjørgum E, Mihai O, Yang J, Lein H L, Grande T, Raaen S, Zhu Y, Holmen A, Chen D. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation. ACS Catalysis, 2020, 10(6): 3707–3719

    Article  CAS  Google Scholar 

  160. Zhang C, Zeng K, Wang C, Liu X, Wu G, Wang Z, Wang D. LaMnO3 perovskites via a facile nickel substitution strategy for boosting propane combustion performance. Ceramics International, 2020, 46(5): 6652–6662

    Article  CAS  Google Scholar 

  161. Zhang R, Li P, Xiao R, Liu N, Chen B. Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study. Applied Catalysis B: Environmental, 2016, 196: 142–154

    Article  CAS  Google Scholar 

  162. Bao Z, Fung V, Moon J, Hood Z D, Rochow M, Kammert J, Polo-Garzon F, Wu Z. Revealing the interplay between “intelligent behavior” and surface reconstruction of non-precious metal doped SrTiO3 catalysts during methane combustion. Catalysis Today, 2023, 416: 113672

    Article  CAS  Google Scholar 

  163. Fan L, Li M, Zhang C, Ismail A, Hu B, Zhu Y. Effect of Cu/Co ratio in CuaCo1−aOx (a = 0.1, 0.2, 0.4, 0.6) flower structure on its surface properties and catalytic performance for toluene oxidation. Journal of Colloid and Interface Science, 2021, 599: 404–415

    Article  CAS  PubMed  Google Scholar 

  164. Kim K H, Szulejko J E, Raza N, Kumar V, Vikrant K, Tsang D C W, Bolan N S, Ok Y S, Khan A. Identifying the best materials for the removal of airborne toluene based on performance metrics—a critical review. Journal of Cleaner Production, 2019, 241(20): 118408

    Article  CAS  Google Scholar 

  165. Li M, Zhang W, Zhang X, Lian Y, Niu X, Zhu Y. Influences of different surface oxygen species on oxidation of toluene and/or benzene and their reaction pathways over Cu-Mn metal oxides. Journal of Colloid and Interface Science, 2023, 630: 301–316

    Article  CAS  PubMed  Google Scholar 

  166. Lv C, Zhang J, Yan L, Chen H, Hu M. Boosting sulfur tolerance and catalytic performance in toluene combustion via enhanced-mechanism of Ce-Fe dopants incorporation of LaCoO3 perovskite. Journal of Environmental Chemical Engineering, 2022, 10(5): 108372

    Article  CAS  Google Scholar 

  167. Yi H, Miao L, Xu J, Zhao S, Xie X, Du C, Tang T, Tang X. Palladium particles supported on porous CeMnO3 perovskite for catalytic oxidation of benzene. Colloids and Surfaces A, 2021, 623(20): 126687

    Article  CAS  Google Scholar 

  168. Chen H, Wei G, Liang X, Liu P, He H, Xi Y, Zhu J. The distinct effects of substitution and deposition of Ag in perovskite LaCoO3 on the thermally catalytic oxidation of toluene. Applied Surface Science, 2019, 489(30): 905–912

    Article  CAS  Google Scholar 

  169. Zhao A, Ren Y, Wang H, Qu Z. Enhancement of toluene oxidation performance over La1−xCoO3−δ perovskite by lanthanum non-stoichiometry. Journal of Environmental Sciences (China), 2023, 127: 811–823

    Article  CAS  PubMed  Google Scholar 

  170. Liu L, Zhang H, Jia J, Sun T, Sun M. Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal. Inorganic Chemistry, 2018, 57(14): 8451–8457

    Article  CAS  PubMed  Google Scholar 

  171. Yang J, Li L, Yang X, Song S, Li J, Jing F, Chu W. Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion. Catalysis Today, 2019, 327(1): 19–27

    Article  CAS  Google Scholar 

  172. Azalim S, Franco M, Brahmi R, Giraudon J M, Lamonier J F. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts. Journal of Hazardous Materials, 2011, 188(1): 422–427

    Article  CAS  PubMed  Google Scholar 

  173. Huang X, Wang C, Zhu B, Lin L, He L. Exploration of sources of OVOCs in various atmospheres in southern China. Environmental Pollution, 2019, 249: 831–842

    Article  CAS  PubMed  Google Scholar 

  174. Belzunce P S, Cadús L E, Durán F G. Obtaining stable suspensions for washcoating in microchannels: study of the variables involved and their effects on the catalyst. Chemical Engineering and Processing, 2019, 146: 107666

    Article  CAS  Google Scholar 

  175. Martínez A H, Lopez E, Cadús L E, Agüero F N. Elucidation of the role of support in Rh/perovskite catalysts used in ethanol steam reforming reaction. Catalysis Today, 2021, 372(15): 59–69

    Article  Google Scholar 

  176. Guo M, Li K, Zhang H, Min X, Hu X, Guo W, Jia J, Sun T. Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active in-siiu generated GdMn2O5/GdMnO3 catalysts. Journal of Colloid and Interface Science, 2020, 578(15): 229–241

    Article  CAS  PubMed  Google Scholar 

  177. Shipilovskikh S A, Rubtsov A E, Malkov A V. Oxidative dehomologation of aldehydes with oxygen as a terminal oxidant. Organic Letters, 2017, 19(24): 6760–6762

    Article  CAS  PubMed  Google Scholar 

  178. Ding J, Liu J, Yang Y, Zhao L, Yu Y. Understanding A-site tuning effect on formaldehyde catalytic oxidation over La-Mn perovskite catalysts. Journal of Hazardous Materials, 2022, 422(15): 126931

    Article  CAS  PubMed  Google Scholar 

  179. Xu Y, Dhainaut J, Dacquin J P, Mamede A S, Marinova M, Lamonier J F, Vezin H, Zhang H, Royer S. La1−x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: the role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 2021, 287(15): 119955

    Article  CAS  Google Scholar 

  180. Xu Y, Dhainaut J, Rochard G, Dacquin J P, Mamede A S, Giraudon J M, Lamonier J F, Zhang H, Royer S. Hierarchical porous ε-MnO2 from perovskite precursor: application to the formaldehyde total oxidation. Chemical Engineering Journal, 2020, 388(15): 124146

    Article  CAS  Google Scholar 

  181. Li J, Shi Y, Fu X, Huang J, Zhang Y, Deng S, Zhang F. Hierarchical ZSM-5 based on fly ash for the low-temperature purification of odorous volatile organic compound in cooking fumes. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 289–314

    Article  CAS  Google Scholar 

  182. Li J, Shi Y, Fu X, Shu Y, Huang J, Zhu J, Tian G, Hu J. Active oxygen species and oxidation mechanism over Ce-doped LaMn0.8Ni0.2O3/hierarchical ZSM-5 in pentanal oxidation. Journal of Rare Earths, 2021, 39(9): 1062–1072

    Article  CAS  Google Scholar 

  183. Huang X, Zhang B, Xia S, Han Y, Wang C, Yu G, Feng N. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in north and south china. Environmental Pollution, 2020, 261: 114152

    Article  CAS  PubMed  Google Scholar 

  184. Zhu R, Liu B, Wang S, Huang X, Schuarca R L, He W, Cybulskis V J, Bond J Q. Understanding the mechanism(s) of ketone oxidation on VOx/γ-Al2O3. Journal of Catalysis, 2021, 404: 109–127

    Article  CAS  Google Scholar 

  185. Mu X, Ding H, Pan W, Zhou Q, Du W, Qiu K, Ma J, Zhang K. Research progress in catalytic oxidation of volatile organic compound acetone. Journal of Environmental Chemical Engineering, 2021, 9(4): 105650

    Article  CAS  Google Scholar 

  186. Li S, Wang D, Wu X, Chen Y. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chinese Journal of Catalysis, 2020, 41(4): 550–560

    Article  CAS  Google Scholar 

  187. Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M. Partial substitution of manganese with cerium in SrMnO3 nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone. Materials Chemistry and Physics, 2016, 182: 332–337

    Article  CAS  Google Scholar 

  188. Cai Y, Zhu X, Hu W, Zheng C, Yang Y, Chen M, Gao X. Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M = Mn, Fe, and Co) perovskite catalysts. Journal of Industrial and Engineering Chemistry, 2019, 70(25): 447–452

    Article  CAS  Google Scholar 

  189. Qin Y, Shen F, Zhu T, Hong W, Liu X. Catalytic oxidation of ethyl acetate over LaBO3 (B = Co, Mn, Ni, Fe) perovskites supported silver catalysts. RSC Advances, 2018, 8(58): 33425–33431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhu X, Zhang S, Yang Y, Zheng C, Zhou J, Gao X, Tu X. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1−xCexCoO3+δ catalysts. Applied Catalysis B: Environmental, 2017, 213: 97–105

    Article  CAS  Google Scholar 

  191. Ikhlaq A, Kasprzyk-Hordern B. Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: formation of chlorides. Applied Catalysis B: Environmental, 2017, 200: 274–282

    Article  CAS  Google Scholar 

  192. Zhao J, Xi W, Tu C, Dai Q, Wang X. Catalytic oxidation of chlorinated VOCs over Ru/TixSn1−x catalysts. Applied Catalysis B: Environmental, 2020, 263: 118237

    Article  CAS  Google Scholar 

  193. De Rivas B, López-Fonseca R, Gutiérrez-Ortiz M Á, Gutiérrez-Ortiz J I. Combustion of chlorinated VOCs using κ-CeZrO4 catalysts. Catalysis Today, 2011, 176(1): 470–473

    Article  CAS  Google Scholar 

  194. Yang P, Shi Z, Yang S, Zhou R. High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 2015, 126(14): 361–369

    Article  CAS  Google Scholar 

  195. Wang W, Meng Q, Xue Y, Weng X, Sun P, Wu Z. Lanthanide perovskite catalysts for oxidation of chloroaromatics: secondary pollution and modifications. Journal of Catalysis, 2018, 366: 213–222

    Article  CAS  Google Scholar 

  196. Zhang C, Cao H, Wang C, He M, Zhan W, Guo Y. Catalytic mechanism and pathways of 1,2-dichloropropane oxidation over LaMnO3 perovskite: an experimental and DFT study. Journal of Hazardous Materials, 2021, 402(15): 123473

    Article  CAS  PubMed  Google Scholar 

  197. Weng X, Meng Q, Liu J, Jiang W, Pattisson S, Wu Z. Catalytic oxidation of chlorinated organics over lanthanide perovskites: effects of phosphoric acid etching and water vapor on chlorine desorption behavior. Environmental Science & Technology, 2019, 53(2): 884–893

    Article  CAS  Google Scholar 

  198. He C, Pan K, Chang M. Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts. Environmental Science and Pollution Research International, 2018, 25(12): 11584–11594

    Article  CAS  PubMed  Google Scholar 

  199. Pan K, He C, Chang M. Oxidation of TCE by combining perovskite-type catalyst with DBD. IEEE Transactions on Plasma Science, 2019, 47(2): 1152–1163

    Article  CAS  Google Scholar 

  200. Ding J, Liu J, Yang Y, Wang Z, Yu Y. Reaction mechanism of dichloromethane oxidation on LaMnO3 perovskite. Chemosphere, 2021, 277: 130194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support provided by the following organisations is gratefully acknowledged: the National Natural Science Foundation of China (Grant Nos. 21976141, 22102123, 42277485); the Department of Science and Technology of Hubei Province (Grant No. 2021CFA034); the Department of Education of Hubei Province (Grant Nos. T2020011, Q20211712); the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing (Grant No. STRZ202101) and the South Africa National Research Foundation (No. 137947). SACC acknowledges Fundação para a Ciência e a Tecnologia (FCT), Portugal for Scientific Employment Stimulus-Institutional Call (Grant No. CEEC-INST/00102/2018) and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (Grant Nos. UIDB/50006/2020 and UIDP/5006/2020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjiang Zhu or Xinying Liu.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xiao, P., Yang, J. et al. Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Front. Chem. Sci. Eng. 17, 1649–1676 (2023). https://doi.org/10.1007/s11705-023-2324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2324-x

Keywords

Navigation