Skip to main content
Log in

Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO·7Al2O3 (M = Ca, Sr). The monoliths are characterized by means of nitrogen adsorption/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physicchemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of La0.8Sr0.2MnO3 and also prevents the interaction between La0.8Sr0.2MnO3 and cordierite or γ-Al2O3, both crystal structure and surface morphology of La0.8Sr0.2MnO3 phase can thereby be stable on the mayenite surface even at high temperature up to 1050 °C. Under the given reaction conditions, La0.8Sr0.2MnO3 monolith washcoated with 12SrO·7Al2O3 shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2017

    Article  Google Scholar 

  2. Misono M. A view on the future of mixed oxide catalysts: The case of heteropolyacids (polyoxometalates) and perovskites. Catalysis Today, 2005, 100(1): 95–100

    Article  CAS  Google Scholar 

  3. Dupont V, Moallemi F, Williams A, Zhang S H. Combustion of methane in catalytic honeycomb monolith burners. International Journal of Energy Research, 2000, 24(13): 1181–1201

    Article  CAS  Google Scholar 

  4. Avila P, Montes M, Miró E E. Monolithic reactors for environmental applications: A review on preparation technologies. Chemical Engineering Journal, 2005, 109(1): 11–36

    Article  CAS  Google Scholar 

  5. Cimino S, Colonna S, de Rossi S, Faticanti M, Lisi L, Pettiti I, Porta P. Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 Perovskite. Journal of Catalysis, 2002, 205 (2): 309–317

    Article  CAS  Google Scholar 

  6. Cimino S, Pirone R, Russo G. Thermal stability of perovskite-based monolithic reactors in the catalytic combustion of methane. Industrial & Engineering Chemistry Research, 2001, 40(1): 80–85

    Article  CAS  Google Scholar 

  7. Cimino S, Lisi L, Pirone R, Russo G, Turco M. Methane combustion on perovskites-based structured catalysts. Catalysis Today, 2000, 59 (1): 19–31

    Article  CAS  Google Scholar 

  8. Stephan K, Hackenberger M, Kießling D, Wendt G. Supported perovskite-type oxide catalysts for the total oxidation of chlorinated hydrocarbons. Catalysis Today, 1999, 54(1): 23–30

    Article  CAS  Google Scholar 

  9. Alifanti M, Florea M, Pârvulescu V I. Ceria-based oxides as supports for LaCoO3 perovskite catalysts for total oxidation of VOC. Applied Catalysis B: Environmental, 2007, 70(3): 400–405

    Article  CAS  Google Scholar 

  10. Yin F, Ji S, Chen B, Zhao L, Liu H, Li C. Preparation and characterization of LaFe1−x MgxO3/Al2O3/FeCrAl: Catalytic properties in methane combustion. Applied Catalysis B: Environmental, 2006, 66(2): 265–273

    Article  CAS  Google Scholar 

  11. Fabbrini L, Rossetti I, Forni L. Effect of primer on honeycombsupported La0.9Ce0.1CoO3 perovskite for methane catalytic flameless combustion. Applied Catalysis B: Environmental, 2003, 44(1): 107–116

    Article  CAS  Google Scholar 

  12. Arendt E, Maione A, Klisinska A, Sanz O, Montes M, Suarez S, Blanco J, Ruiz P. Structuration of LaMnO3 perovskite catalysts on ceramic and metallic monoliths: Physico-chemical characterisation and catalytic activity in methane combustion. Applied Catalysis A, General, 2008, 339(1): 1–14

    Article  CAS  Google Scholar 

  13. Zou H, Ge X, Shen J. Preparation and catalytic properties of solid base catalysts I. Metal Oxides. Thermochimica Acta, 2003, 397(1): 81–86

    Article  CAS  Google Scholar 

  14. Yamamoto T, Hatsui T, Matsuyama T, Tanaka T, Funabiki T. Structures and acid-base properties of La/Al2O3 role of La addition to enhance thermal stability of γ-Al2O3. Chemistry of Materials, 2003, 15(25): 4830–4840

    Article  CAS  Google Scholar 

  15. Yamamoto T, Tanaka T, Matsuyama T, Funabiki T, Yoshida S. Structural analysis of La/Al2O3 catalysts by La K-edge XAFS. Journal of Synchrotron Radiation, 2001, 8(2): 634–636

    Article  CAS  Google Scholar 

  16. Zwinkels M F M, Haussner O, Menon P G, Järås S. Preparation and characterization of LaCrO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18 and Al2O3-coated monoliths. Catalysis Today, 1999, 47(1): 73–82

    Article  CAS  Google Scholar 

  17. Hayashi K, Matsuishi S, Hirano M, Hosono H. Formation of oxygen radicals in 12CaO·7Al2O3: Instability of extraframework oxide ions and uptake of oxygen gas. Journal of Physical Chemistry B, 2004, 108(26): 8920–8925

    Article  CAS  Google Scholar 

  18. Li C, Hirabayashi D, Suzuki K. A crucial role of O2− and O 2−2 on mayenite structure for biomass tar steam reforming over Ni/ Ca12Al14O33. Applied Catalysis B: Environmental, 2009, 88(3): 351–360

    Article  CAS  Google Scholar 

  19. Yang S, Kondo J, Hayashi K, Hirano M, Domen K, Hosono H. Formation and desorption of oxygen species in nanoporous crystal 12CaO·7Al2O3. Chemistry of Materials, 2004, 16(1): 104–110

    Article  CAS  Google Scholar 

  20. Hayashi K, Ueda N, Matsuishi S, Hirano M, Kamiya T, Hosono H. Solid state syntheses of 12SrO·7Al2O3 and formation of high density oxygen radical anions, O and O2−. Chemistry of Materials, 2008, 20(19): 5987–5996

    Article  CAS  Google Scholar 

  21. Banús E D, Milt V G, Miró E E, Ulla M A. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam. Applied Catalysis A, General, 2009, 362(1): 129–138

    Article  Google Scholar 

  22. Stutz M J, Poulikakos D. Optimum washcoat thickness of a monolith reactor for syngas production by partial oxidation of methane. Chemical Engineering Science, 2008, 63(7): 1761–1770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Kong, Z., Liu, H. et al. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate. Front. Chem. Sci. Eng. 8, 87–94 (2014). https://doi.org/10.1007/s11705-014-1410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1410-5

Keywords

Navigation