Skip to main content
Log in

Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into polyvinylidene fluoride membranes for desalination applications by vacuum membrane distillation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In the present research, for the first time, lycopodium as a novel nanofiller was incorporated into a polyvinylidene fluoride matrix to fabricate lycopodium/polyvinylidene fluoride flat-sheet membrane for desalination applications by vacuum membrane distillation process. The prepared lycopodium/polyvinylidene fluoride membranes and lycopodium were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared, energy dispersive X-ray, and mapping analyses. Water contact angle and liquid entry pressure measurements were also performed. Response surface methodology was applied to optimize membrane structure and performance. The optimized lycopodium/ polyvinylidene fluoride membrane exhibits superior performance compared to the neat polyvinylidene fluoride membrane in terms of flux, salt rejection, water contact angle, and hydrophobicity. In vacuum membrane distillation experiments, using a 15000 ppm NaCl solution as a feed at 70 °C, the neat polyvinylidene fluoride membrane, optimum membrane, and agglomerated membrane (with high lycopodium loading) demonstrated 3.80, 25.20, and 14.83 LMH flux and 63.30%, 99.99%, 99.96% salt rejection, respectively. This improvement in flux and salt rejection of the optimized membrane was related to the presence of lycopodium with hydrophobic nature and interconnected nano-channels in membrane structure. It was found that lycopodium, as the most hydrophobic material, effectively influences the membrane performance and structure for membrane distillation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tijing L D, Choi J S, Lee S, Kim S H, Shon H K. Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 2014, 453: 435–462

    Article  CAS  Google Scholar 

  2. Qasim M, Samad I U, Darwish N A, Hilal N. Comprehensive review of membrane design and synthesis for membrane distillation. Desalination, 2021, 518: 115168–115233

    Article  CAS  Google Scholar 

  3. Susanto H. Towards practical implementations of membrane distillation. Chemical Engineering and Processing, 2011, 50(2): 139–150

    Article  CAS  Google Scholar 

  4. Baker R W. Membrane Technology and Applications. New Jersey: John Wiley & Sons, Ltd., 2012

    Book  Google Scholar 

  5. Capizzano S, Frappa M, Macedonio F, Drioli E. A review on membrane distillation in process engineering: design and energy equations, materials and wetting problems. Frontiers of Chemical Science and Engineering, 2022, 16(5): 592–613

    Article  Google Scholar 

  6. Leaper S, Abdel-Karim A, Gorgojo P. The use of carbon nanomaterials in membrane distillation membranes: a review. Frontiers of Chemical Science and Engineering, 2021, 15(4): 755–774

    Article  CAS  Google Scholar 

  7. Jiang X, Tuo L, Lu D, Hou B, Chen W, He G. Progress in membrane distillation crystallization: process models, crystallization control and innovative applications. Frontiers of Chemical Science and Engineering, 2017, 11(4): 647–662

    Article  Google Scholar 

  8. Deng L, Li P, Liu K, Wang X, Hsiao B S. Robust superhydrophobic dual layer nanofibrous composite membranes with a hierarchically structured amorphous polypropylene skin for membrane distillation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(18): 11282–11297

    Article  CAS  Google Scholar 

  9. Purkait M K, Sinha M K, Mondal P, Singh R. Introduction to membranes. Interface Science and Technology, 2018, 25: 1–37

    Article  Google Scholar 

  10. Li H, Shi W, Zeng X, Huang S, Zhang H, Qin X. Improved desalination properties of hydrophobic GO-incorporated PVDF electrospun nanofibrous composites for vacuum membrane distillation. Separation and Purification Technology, 2020, 230: 115889–115902

    Article  CAS  Google Scholar 

  11. Zhang J, Ding Q, Xu Q, Xiao T, Yang X. An ultra-robust fabric-embedded PVDF membrane fabricated by NTIPS method and its application for monosodium glutamate concentration in membrane distillation. Journal of Membrane Science, 2021, 635: 119448–119460

    Article  CAS  Google Scholar 

  12. Seraj S, Mohammadi T, Tofighy M A. Graphene-based membranes for membrane distillation applications: a review. Journal of Environmental Chemical Engineering, 2022, 10(3): 107974–108007

    Article  CAS  Google Scholar 

  13. Murugesan V, Rana D, Matsuura T, Lan C Q. Optimization of nanocomposite membrane for vacuum membrane distillation (VMD) using static and continuous flow cells: effect of nanoparticles and film thickness. Separation and Purification Technology, 2020, 241: 116685–116699

    Article  Google Scholar 

  14. Li Z, Rana D, Wang Z, Matsuura T, Lan C Q. Synergic effects of hydrophilic and hydrophobic nanoparticles on performance of nanocomposite distillation membranes: an experimental and numerical study. Separation and Purification Technology, 2018, 202: 45–58

    Article  CAS  Google Scholar 

  15. Li Z, Rana D, Matsuura T, Lan C Q. The performance of polyvinylidene fluoride-polytetrafluoroethylene nanocomposite distillation membranes: an experimental and numerical study. Separation and Purification Technology, 2019, 226: 192–208

    Article  CAS  Google Scholar 

  16. Zhou R, Rana D, Matsuura T, Lan C Q. Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Separation and Purification Technology, 2019, 217: 154–163

    Article  CAS  Google Scholar 

  17. Seraj S, Sheikhi M, Mohammadi T, Tofighy M A. Membrane materials for forward osmosis and membrane distillation in oily wastewater treatment. In: Oil-water Mixtures and Emulsions. American Chemical Society: New York, 2022, 305–346

    Google Scholar 

  18. Wittborn J, Rao K V, El-Ghazaly G, Rowley J R. Nanoscale similarities in the substructure of the exines of fagus pollen grains and lycopodium spores. Annals of Botany, 1998, 82(2): 141–145

    Article  Google Scholar 

  19. Wittborn J, Rao K V, El-Ghazaly G, Rowley J R. Substructure of spore and pollen grain exines in lycopodium, alnus, betula, fagus and rhododendron: investigation with atomic force and scanning tunnelling microscopy. Grana, 1996, 35(4): 185–198

    Article  Google Scholar 

  20. Bidabadi M, Ghashghaei Nejad P, Rasam H, Sadeghi S, Shabani B. Mathematical modeling of non-premixed laminar flow flames fed with biofuel in counter-flow arrangement considering porosity and thermophoresis effects: an asymptotic approach. Energies, 2018, 11(11): 2945–2970

    Article  CAS  Google Scholar 

  21. Sang M, Shin J, Kim K, Yu K J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials, 2019, 9(3): 374–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rajpoot S, Malik R, Kim Y W. Low thermal conductivity in porous SiC-SiO2-Al2O3-TiO2 ceramics induced by multiphase thermal resistance. Ceramics International, 2021, 47(14): 20161–20168

    Article  CAS  Google Scholar 

  23. Zhu W, Zheng G, Cao S, He H. Thermal conductivity of amorphous SiO2 thin film: a molecular dynamics study. Scientific Reports, 2018, 8(1): 1–9

    Google Scholar 

  24. Çimen A, Bilgiç A, Kursunlu A N, Gübbük İ H, Uçan H İ. Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from aqueous media using chemically modified sporopollenin of lycopodium clavatum as novel biosorbent. Desalination and Water Treatment, 2014, 52(25–27): 4837–4847

    Article  Google Scholar 

  25. Kahrizi M, Kasiri N, Mohammadi T, Zhao S. Introducing sorption coefficient through extended UNIQAC and Flory-Huggins models for improved flux prediction in forward osmosis. Chemical Engineering Science, 2019, 198: 33–42

    Article  CAS  Google Scholar 

  26. Young T H, Lin D T, Chen L Y, Huang Y H, Chiu W Y. Membranes with a particulate morphology prepared by a dry-wet casting process. Polymer, 1999, 40(19): 5257–5264

    Article  CAS  Google Scholar 

  27. Pouya Z A, Tofighy M A, Mohammadi T. Synthesis and characterization of polytetrafluoroethylene/oleic acid-functionalized carbon nanotubes composite membrane for desalination by vacuum membrane distillation. Desalination, 2021, 503: 114931–114944

    Article  CAS  Google Scholar 

  28. Khalifa A E, Lawal D U. Performance and optimization of air gap membrane distillation system for water desalination. Arabian Journal for Science and Engineering, 2015, 40(12): 3627–3639

    Article  CAS  Google Scholar 

  29. Rakić T, Kasagić-Vujanović I, Jovanović M, Jančić-Stojanović B, Ivanović D. Comparison of full factorial design, central composite design, and Box-Behnken design in chromatographic method development for the determination of fluconazole and its impurities. Analytical Letters, 2014, 47(8): 1334–1347

    Article  Google Scholar 

  30. Simone S, Figoli A, Criscuoli A, Carnevale M C, Rosselli A, Drioli E. Preparation of hollow fiber membranes from PVDF/PVP blends and their application in VMD. Journal of Membrane Science, 2010, 364(1–2): 219–232

    Article  CAS  Google Scholar 

  31. Figoli A, Simone S, Criscuoli A, Al-Jlil S A, al Shabouna F S, Al-Romaih H S, Di Nicolò E, Al-Harbi O A, Drioli E. Hollow fibers for seawater desalination from blends of PVDF with different molecular weights: morphology, properties and VMD performance. Polymer, 2014, 55(6): 1296–1306

    Article  CAS  Google Scholar 

  32. Drioli E, Ali A, Simone S, Macedonio F, AL-Jlil S A, Al Shabonah F S, Al-Romaih H S, Al-Harbi O, Figoli A, Criscuoli A. Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. Separation and Purification Technology, 2013, 115: 27–38

    Article  CAS  Google Scholar 

  33. Yadav A, Labhasetwar P K, Shahi V K. Fabrication and optimization of tunable pore size poly(ethylene glycol) modified poly(vinylidene-co-hexafluoropropylene) membranes in vacuum membrane distillation for desalination. Separation and Purification Technology, 2021, 271: 118840–118851

    Article  CAS  Google Scholar 

  34. Mokhtar N M, Lau W J, Ng B C, Ismail A F, Veerasamy D. Preparation and characterization of PVDF membranes incorporated with different additives for dyeing solution treatment using membrane distillation. Desalination and Water Treatment, 2015, 56(8): 1999–2012

    Article  CAS  Google Scholar 

  35. Ursino C, Ounifi I, di Nicolò E, Cheng X Q, Shao L, Zhang Y, Drioli E, Criscuoli A, Figoli A. Development of non-woven fabric-based ECTFE membranes for direct contact membrane distillation application. Desalination, 2021, 500: 114879–114889

    Article  CAS  Google Scholar 

  36. Dyab A K F, Abdallah E M, Ahmed S A, Rabee M M. Fabrication and characterization of novel natural lycopodium clavatum sporopollenin microcapsules loaded in-situ with nano-magnetic humic acid-metal complexes. Journal of Encapsulation and Adsorption Sciences, 2016, 6(4): 109–132

    Article  CAS  Google Scholar 

  37. Serzane R, Locs J, Berzina-Cimdina L, Sadretdinovs R. Development of porous ceramics by lycopodium using uniaxial pressing and sintering. Processing and Application of Ceramics, 2010, 4(4): 231–235

    Article  CAS  Google Scholar 

  38. Li J, Chen G, Luo S, Pang H, Gao C, Huang S, Liu S, Qin S. Tuning the microstructure of SMA/CPVC membrane for enhanced separation performance by adjusting the coagulation bath temperature. Journal of Applied Polymer Science, 2022, 139(20): 52148–52159

    Article  CAS  Google Scholar 

  39. Salem M S, El-Shazly A H, Nady N, Elmarghany M R, Sabry M N. PES/PVDF blend membrane and its composite with graphene nanoplates: preparation, characterization, and water desalination via membrane distillation. Desalination and Water Treatment, 2019, 166: 9–23

    Article  CAS  Google Scholar 

  40. Qiu H, Peng Y, Ge L, Villacorta Hernandez B, Zhu Z. Pore channel surface modification for enhancing anti-fouling membrane distillation. Applied Surface Science, 2018, 443: 217–226

    Article  CAS  Google Scholar 

  41. Yang Z, Zhang G, Lin L, Ren D, Meng Q, Zhang H. Effects of baffles on separation of aqueous ethanol solution with hollow fibers. Frontiers of Chemical Engineering in China, 2009, 3(1): 68–72

    Article  CAS  Google Scholar 

  42. Abdel-Karim A, Leaper S, Faki B, Miguel J, Alled L. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation graphene-based membranes for water purification. Journal of Membrane Science, 2018, 559: 309–323

    Google Scholar 

  43. Cassie A B D, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 546–551

    Article  CAS  Google Scholar 

  44. Abdel-Karim A, Luque-Alled J M, Leaper S, Alberto M, Fan X, Vijayaraghavan A, Gad-Allah T A, El-Kalliny A S, Szekely G, Ahmed S I A, Holmes S M, Gorgojo P. PVDF membranes containing reduced graphene oxide: effect of degree of reduction on membrane distillation performance. Desalination, 2019, 452: 196–207

    Article  CAS  Google Scholar 

  45. Cheng D, Zhang J, Li N, Ng D R, Gray S, Xie Z. Antiwettability and performance stability of a composite hydrophobic/hydrophilic dual-layer membrane in wastewater treatment by membrane distillation. Industrial & Engineering Chemistry Research, 2018, 57(28): 9313–9322

    Article  CAS  Google Scholar 

  46. Mokhtar N M, Lau W J, Ismail A F. The potential of membrane distillation in recovering water from hot dyeing solution. Journal of Water Process Engineering, 2014, 2: 71–78

    Article  Google Scholar 

  47. Zhang Y, Shen F, Cao W, Wan Y. Hydrophilic/hydrophobic janus membranes with a dual-function surface coating for rapid and robust membrane distillation desalination. Desalination, 2020, 491:114561–114571

    Article  CAS  Google Scholar 

  48. Tang N, Feng C, Han H, Hua X, Zhang L, Xiang J, Cheng P, Du W, Wang X. High permeation flux polypropylene/ethylene vinyl acetate co-blending membranes via thermally induced phase separation for vacuum membrane distillation desalination. Desalination, 2016, 394: 44–55

    Article  CAS  Google Scholar 

  49. Huang C Y, Ko C C, Chen L H, Huang C T, Tung K L, Liao Y C. A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation. Separation and Purification Technology, 2018, 198: 79–86

    Article  CAS  Google Scholar 

  50. Chen H, Wu C, Jia Y, Wang X, Lu X. Comparison of three membrane distillation configurations and seawater desalination by vacuum membrane distillation. Desalination and Water Treatment, 2011, 28(1–3): 321–327

    CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Iran National Science Foundation (INSF) for supporting this study (Grant No. 96008182).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toraj Mohammadi or Maryam Ahmadzadeh Tofighy.

Electronic supplementary material

11705_2022_2276_MOESM1_ESM.pdf

Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into polyvinylidene fluoride membranes for desalination applications by vacuum membrane distillation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seraj, S., Mohammadi, T. & Tofighy, M.A. Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into polyvinylidene fluoride membranes for desalination applications by vacuum membrane distillation. Front. Chem. Sci. Eng. 17, 1162–1182 (2023). https://doi.org/10.1007/s11705-022-2276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2276-6

Keywords

Navigation