Skip to main content
Log in

Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Acetoin is an important platform chemical, which has a wide range of applications in many industries. Halomonas bluephagenesis, a chassis for next generation of industrial biotechnology, has advantages of fast growth and high tolerance to organic acid salts and alkaline environment. Here, α-acetolactate synthase and α-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H. bluephagenesis to produce acetoin from pyruvate. After reaction condition optimization and further increase of α-acetolactate decarboxylase expression, acetoin production and yield were significantly enhanced to 223.4 mmol·L−1 and 0.491 mol·mol−1 from 125.4 mmol·L−1 and 0.333 mol·mol−1, respectively. Finally, the highest titer of 974.3 mmol·L−1 (85.84 g·L−1) of acetoin was accumulated from 2143.4 mmol·L−1 (188.6 g·L−1) of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions. Moreover, the reusability of the cell catalysis was also tested, and the result illustrated that the whole-cell catalysis obtained 433.3, 440.2, 379.0, 442.8 and 339.4 mmol·L−1 (38.2, 38.8, 33.4, 39.0 and 29.9 g·L−1) acetoin in five repeated cycles under the same conditions. This work therefore provided an efficient H. bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao Z, Xu P. Acetoin metabolism in bacteria. Critical Reviews in Microbiology, 2007, 33(2): 127–140

    Article  CAS  PubMed  Google Scholar 

  2. Wang M, Fu J, Zhang X, Chen T. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnology Letters, 2012, 34(10): 1877–1885

    Article  PubMed  Google Scholar 

  3. Xu H, Cui Y, Tian Y, Wang S, Zhu K, Zhou S, Huang Y, He Q, Han Y, Liu L, Li W, Zhu L, Jiang G, Liu J. A summary of producing acetoin by biological method. World Journal of Food Science and Technology, 2020, 4(4): 90–103

    Article  Google Scholar 

  4. Sun J A, Zhang L Y, Rao B, Shen Y L, Wei D Z. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresource Technology, 2012, 119: 94–98

    Article  CAS  PubMed  Google Scholar 

  5. He Y Z, Chen F X, Sun M J, Gao H F, Guo Z W, Lin H, Chen J B, Jin W S, Yang Y L, Zhang L Y, Yuan J. Efficient (3S)-acetoin and (2S,3S)-2,3-butanediol production from meso-2,3-butanediol using whole-cell biocatalysis. Molecules, 2018, 23(3): 691

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cui Z Z, Wang Z W, Zheng M Y, Chen T. Advances in biological production of acetoin: a comprehensive overview. Critical Reviews in Biotechnology, 2021, in press

  7. Maina S, Prabhu A A, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances. Biotechnology Advances, 2021, 54: 107783

    Article  PubMed  Google Scholar 

  8. Xu H, Jia S R, Liu J J. Development of a mutant strain of Bacillus subtilis showing enhanced production of acetoin. African Journal of Biotechnology, 2011, 10(5): 779–788

    CAS  Google Scholar 

  9. Bae S J, Kim S, Hahn J S. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Scientific Reports, 2016, 6(1): 1–8

    Article  Google Scholar 

  10. Lu L X, Mao Y F, Kou M Y, Cui Z Z, Jin B, Chang Z S, Wang Z W, Ma H W, Chen T. Engineering central pathways for industrial-level (3R)-acetoin biosynthesis in Corynebacterium glutamicum. Microbial Cell Factories, 2020, 19(1): 102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bae S J, Kim S, Park H J, Kim J, Jin H, Kim B G, Hahn J S. High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate. Metabolic Engineering, 2021, 66: 68–78

    Article  CAS  PubMed  Google Scholar 

  12. Almuharef I, Rahman M S, Qin W. Enzymatic conversion of glycerol to 2,3-butanediol and acetoin by Serratia proteamaculans SRWQ1. Waste and Biomass Valorization, 2018, 10(7): 1833–1844

    Article  Google Scholar 

  13. Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Chemical biotechnology, 2016, 42: 169–177

    CAS  Google Scholar 

  14. Fukuda H, Hama S, Tamalampudi S, Noda H. Whole-cell biocatalysts for biodiesel fuel production. Trends in Biotechnology, 2008, 26(12): 668–673

    Article  CAS  PubMed  Google Scholar 

  15. Yamada-Onodera K, Yamamoto H, Kawahara N, Tani Y. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnologica, 2002, 22(3–4): 355–362

    Article  CAS  Google Scholar 

  16. Bao T, Zhang X, Rao Z, Zhao X J, Zhang R Z, Yang T W, Xu Z H, Yang S T. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through Homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One, 2014, 9(7): e102951

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou X L, Zhou X, Zhang H Y, Cao R, Xu Y. Improving the performance of cell biocatalysis and the productivity of acetoin from 2,3-butanediol using a compressed oxygen supply. Process Biochemistry, 2018, 64: 46–50

    Article  CAS  Google Scholar 

  18. Peng K, Guo D, Lou Q, Lu X, Cheng J, Qiao J, Lu L, Cai T, Liu Y, Jiang H. Synthesis of ligustrazine from acetaldehyde by a combined biological-chemical approach. ACS Synthetic Biology, 2020, 9(11): 2902–2908

    Article  CAS  PubMed  Google Scholar 

  19. Cui Z Z, Mao Y F, Zhao Y J, Zheng M Y, Wang Z W, Ma H W, Chen T. One-pot efficient biosynthesis of (3R)-acetoin from pyruvate by a two-enzyme cascade. Catalysis Science & Technology, 2020, 10(22): 7734–7744

    Article  CAS  Google Scholar 

  20. Jia X, Liu Y, Han Y. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Scientific Reports, 2017, 7(1): 1–10

    Google Scholar 

  21. Pundir C S, Malik M, Chaudhary R. Quantification of pyruvate with special emphasis on biosensors: a review. Microchemical Journal, 2019, 146: 1102–1112

    Article  CAS  Google Scholar 

  22. Chen G Q, Jiang X R. Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 2018, 50: 94–100

    Article  CAS  PubMed  Google Scholar 

  23. Tan D, Wu Q, Chen J C, Chen G Q. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metabolic Engineering, 2014, 26: 34–47

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Yu L, Qiao G, Chen G Q. Reprogramming Halomonas for industrial production of chemicals. Journal of Industrial Microbiology & Biotechnology, 2018, 45(7): 545–554

    Article  CAS  Google Scholar 

  25. Zhang X, Lin Y, Chen G Q. Halophiles as chassis for bioproduction. Advanced Biosystems, 2018, 2(11): 1800088

    Article  Google Scholar 

  26. Yin J, Chen J C, Wu Q, Chen G Q. Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 2015, 33(7): 1433–1442

    Article  CAS  PubMed  Google Scholar 

  27. Ye J, Hu D, Che X, Jiang X, Li T, Chen J, Zhang H M, Chen G Q. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metabolic Engineering, 2018, 47: 143–152

    Article  CAS  PubMed  Google Scholar 

  28. Ling C, Qiao G Q, Shuai B W, Olavarria K, Yin J, Xiang R J, Song K N, Shen Y H, Guo Y, Chen G Q. Engineering NADH/NAD(+) ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metabolic Engineering, 2018, 49: 275–286

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Chen X Y, Du H T, Zhang X, Ma Y M, Chen J C, Ye J W, Jiang X R, Chen G Q. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metabolic Engineering, 2019, 54: 69–82

    Article  CAS  PubMed  Google Scholar 

  30. Zhao H, Yao Z, Chen X, Wang X, Chen G Q. Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis. Microbial Biotechnology, 2017, 10(6): 1400–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma H, Zhao Y, Huang W, Zhang L, Wu F, Ye J, Chen G Q. Rational flux-tuning of Halomonas bluephagenesis for coproduction of bioplastic PHB and ectoine. Nature Communications, 2020, 11(1): 1–12

    Article  Google Scholar 

  32. Li T, Guo Y Y, Qiao G Q, Chen G Q. Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synthetic Biology, 2016, 5(11): 1264–1274

    Article  CAS  PubMed  Google Scholar 

  33. Jiang X R, Yan X, Yu L P, Liu X Y, Chen G Q. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nature Communications, 2021, 12(1): 1–13

    Google Scholar 

  34. Du H, Zhao Y, Wu F, Ouyang P, Chen J, Jiang X, Ye J, Chen G Q. Engineering Halomonas bluephagenesis for L-threonine production. Metabolic Engineering, 2020, 60: 119–127

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Jin B, Hong K, Lv Y, Wang Z, Chen T. Cell catalysis of citrate to itaconate by engineered Halomonas bluephagenesis. ACS Synthetic Biology, 2021, 10(11): 3017–3027

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Zhang X, Mao Y, Jin B, Guo Y, Wang Z, Chen T. Substrate profiling and tolerance testing of Halomonas TD01 suggest its potential application in sustainable manufacturing of chemicals. Journal of Biotechnology, 2020, 316: 1–5

    Article  CAS  PubMed  Google Scholar 

  37. Zhao H, Zhang H M, Chen X, Li T, Wu Q, Ouyang Q, Chen G Q. Novel T7-like expression systems used for Halomonas. Metabolic Engineering, 2017, 39: 128–140

    Article  CAS  PubMed  Google Scholar 

  38. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology, 1983, 1(9): 784–791

    Article  CAS  Google Scholar 

  39. Tan D, Xue Y S, Aibaidula G, Chen G Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 2011, 102(17): 8130–8136

    Article  CAS  PubMed  Google Scholar 

  40. Qin Q, Ling C, Zhao Y, Yang T, Yin J, Guo Y, Chen G Q. CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metabolic Engineering, 2018, 47: 219–229

    Article  CAS  PubMed  Google Scholar 

  41. Silva-Rocha R, Martinez-Garcia E, Calles B, Chavarria M, Arce-Rodriguez A, de Las Heras A, Paez-Espino A D, Durante-Rodriguez G, Kim J, Nikel P I, Platero R, de Lorenzo V. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research, 2013, 41(D1): D666–D675

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Cai P P, Chen K Q, Ouyang P K. Efficient production of 5-aminovalerate from L-lysine by engineered Escherichia coli whole-cell biocatalysts. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 115–121

    Article  CAS  Google Scholar 

  43. Li J X, Huang Y Y, Chen X R, Du Q S, Meng J Z, Xie N Z, Huang R B. Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration. RSC Advances, 2018, 8(53): 30512–30519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo Z, Zhao X, He Y, Yang T, Gao H, Li G, Chen F, Sun M, Lee J K, Zhang L. Efficient (3R)-acetoin production from meso-2,3-Butanediol using a new whole-cell biocatalyst with co-expression of meso-2,3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla Hemoglobin. Journal of Microbiology and Biotechnology, 2017, 27(1): 92–100

    Article  CAS  PubMed  Google Scholar 

  45. Cui Z Z, Zhao Y J, Mao Y F, Shi T, Lu L X, Ma H W, Wang Z W, Chen T. In vitro biosynthesis of optically pure D-(-)-acetoin from meso-2,3-butanediol using 2,3-butanediol dehydrogenase and NADH oxidase. Journal of Chemical Technology and Biotechnology, 2019, 94(8): 2547–2554

    Article  CAS  Google Scholar 

  46. Zajkoska P, Rebros M, Rosenberg M. Biocatalysis with immobilized Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97(4): 1441–1455

    Article  CAS  PubMed  Google Scholar 

  47. Sun J, Rao B, Zhang L, Shen Y, Wei D. Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system. Chemical Engineering Communications, 2012, 199(11): 1492–1503

    Article  CAS  Google Scholar 

  48. Dai J, Guan W, Ma L, Xiu Z. Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K2HPO4. Separation and Purification Technology, 2017, 184: 275–279

    Article  CAS  Google Scholar 

  49. Becker J, Lange A, Fabarius J, Wittmann C. Top value platform chemicals: bio-based production of organic acids. Current Opinion in Biotechnology, 2015, 36: 168–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0900 200) and the National Natural Science Foundation of China (Grant No. NSFC-21621004). We thank Prof. Guo-Qiang Chen from Tsinghua University for generously providing experimental materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Cui, Z., Zhang, J. et al. Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis. Front. Chem. Sci. Eng. 17, 425–436 (2023). https://doi.org/10.1007/s11705-022-2229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2229-0

Keywords

Navigation