Skip to main content
Log in

Reprogramming Halomonas for industrial production of chemicals

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Halomonas spp. are able to grow under a high salt concentration at alkali pH, they are able to resist contamination by other microbes. Development of Halomonas spp. as platform production strains for the next-generation industrial biotechnology (NGIB) is intensively studied. Among Halomonas spp., Halomonas bluephagenesis is the best studied one with available engineering tools and methods to reprogram it for production of various polyhydroxyalkanoates, proteins, and chemicals. Due to its contamination resistance, H. bluephagenesis can be grown under open and continuous processes not just in the labs but also in at least 1000 L fermentor scale. It is expected that NGIB based on Halomonas spp. be able to engineer for production of increasing number of products in a competitive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

5-aminolevulinic acid

CDW:

Cell dry weight

CRISPR(i):

Clustered regularly interspaced short palindromic repeats (interference)

GBL:

γ-butyrolactone

IPTG:

Isopropyl β-D-thiogalactoside

NGIB:

Next-generation industrial biotechnology

PHA:

Polyhydroxyalkanoates

PHB:

Poly(3-hydroxybutyrate)

PHBV:

Poly(3-hydroxybutyarte-co-3-hydroxyvalerate)

P3HB4HB:

Poly(3-hydroxybutyarte-co-4-hydroxybutyrate)

RBS:

Ribosomal-binding site

RNAP:

RNA polymerase

SEVA:

Standard European Vector Architecture

References

  1. Aharon O (2002) Halophilic Microorganisms and their Environments. Kluwer, New York

    Google Scholar 

  2. Altenbuchner J (2016) Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Appl Environ Microb 82:5421–5427. https://doi.org/10.1128/aem.01453-16

    Article  CAS  Google Scholar 

  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  PubMed  CAS  Google Scholar 

  4. Bruder MR, Pyne ME, Moo-Young M, Chung DA, Chou CP (2016) Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in the genus Clostridium. Appl Environ Microbiol 82:6109–6119. https://doi.org/10.1128/aem.02128-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cai L, Tan D, Aibaidula G, Dong XR, Chen JC, Tian WD, Chen GQ (2011) Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships. Microb Cell Fact 10:88. https://doi.org/10.1186/1475-2859-10-88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology—identifying causes of failure of synthetic biological systems. Biotechnol J 7:856–866. https://doi.org/10.1002/biot.201200085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen GQ, Jiang XR (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotech 50:94–100. https://doi.org/10.1016/j.copbio.2017.11.016

    Article  PubMed  CAS  Google Scholar 

  8. Chen XB, Yin J, Ye JW, Zhang HQ, Che XM, Ma YM, Li MY, Wu LP, Chen GQ (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresource Technol 244:534–541. https://doi.org/10.1016/j.biortech.2017.07.149

    Article  CAS  Google Scholar 

  9. Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167. https://doi.org/10.1016/j.ymben.2017.06.010

    Article  PubMed  CAS  Google Scholar 

  10. Coronado M, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71. https://doi.org/10.1111/j.1574-6968.2000.tb08935.x

    Article  PubMed  CAS  Google Scholar 

  11. de Almeida A, Nikel PI, Giordano AM, Pettinari MJ (2007) Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli. Appl Environ Microb 73:7912–7916. https://doi.org/10.1128/aem.01900-07

    Article  Google Scholar 

  12. Doan VT, Tran HP, Nguyen TB, Nguyen TT, Duong ML, Quillaguaman J (2012) Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam. Microbiologyopen 1:395–406. https://doi.org/10.1002/mbo3.44

    Article  CAS  Google Scholar 

  13. Fallet C, Rohe P, Franco-Lara E (2010) Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng 107:124–133. https://doi.org/10.1002/bit.22750

    Article  PubMed  CAS  Google Scholar 

  14. Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol 86:47–82

    PubMed  CAS  Google Scholar 

  15. Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91. https://doi.org/10.1016/j.ymben.2014.02.006

    Article  PubMed  CAS  Google Scholar 

  16. Gartland KM, Bruschi F, Dundar M, Gahan PB, Viola Magni M, Akbarova Y (2013) Progress towards the ‘Golden Age’ of biotechnology. Curr Opin Biotech 24(Suppl 1):S6–S13. https://doi.org/10.1016/j.copbio.2013.05.011

    Article  PubMed  CAS  Google Scholar 

  17. Goncalves FA, dos Santos ES, de Macedo GR (2015) Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater. J Basic Microbiol 55:695–708. https://doi.org/10.1002/jobm.201400589

    Article  PubMed  CAS  Google Scholar 

  18. Gupta A, Reizman IMB, Reisch CR, Prather KLJ (2017) Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 35:273. https://doi.org/10.1038/nbt.3796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gutiérrez T, Mulloy B, Black K, Green DH (2007) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727. https://doi.org/10.1111/j.1365-2672.2007.03407.x

    Article  PubMed  CAS  Google Scholar 

  20. Guzmán H, Van-Thuoc D, Martin J, Hatti-Kaul R, Quillaguamán J (2009) A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biotechnol 84:1069–1077. https://doi.org/10.1007/s00253-009-2036-2

    Article  PubMed  CAS  Google Scholar 

  21. Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Bioch Bioph Sin 47:231–243. https://doi.org/10.1093/abbs/gmv007

    Article  CAS  Google Scholar 

  22. Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by Halomonas. Metab Eng 44:30–37. https://doi.org/10.1016/j.ymben.2017.09.004

    Article  PubMed  CAS  Google Scholar 

  23. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76. https://doi.org/10.1021/cb7002434

    Article  PubMed  CAS  Google Scholar 

  24. Koller M, Marsalek L, de Sousa Miranda, Dias M, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001

    Article  CAS  Google Scholar 

  25. Lan LH, Zhao H, Chen JC, Chen GQ (2016) Engineering Halomonas spp. as a low-cost production host for production of bio-surfactant protein PhaP. Biotechnol J 11:1595–1604. https://doi.org/10.1002/biot.201600459

    Article  PubMed  CAS  Google Scholar 

  26. Li T, Chen XB, Chen JC, Wu Q, Chen GQ (2014) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511. https://doi.org/10.1002/biot.201400084

    Article  PubMed  CAS  Google Scholar 

  27. Li T, Elhadi D, Chen GQ (2017) Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng 43:29–36. https://doi.org/10.1016/j.ymben.2017.07.007

    Article  PubMed  CAS  Google Scholar 

  28. Li T, Guo YY, Qiao GQ, Chen GQ (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5:1264–1274. https://doi.org/10.1021/acssynbio.6b00105

    Article  PubMed  CAS  Google Scholar 

  29. Li TT, Li T, Ji WY, Wang QY, Zhang HQ, Chen GQ, Lou CB, Ouyang Q (2016) Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp. Biotechnol J 11:219–227. https://doi.org/10.1002/biot.201400828

    Article  PubMed  CAS  Google Scholar 

  30. Lillo JG, Rodriguez-Valera F (1990) Effetcs of culture conditions on poly(beta-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microb 56:2517–2521

    Google Scholar 

  31. Noda S, Kondo A (2017) Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol 35:785–796. https://doi.org/10.1016/j.tibtech.2017.05.006

    Article  PubMed  CAS  Google Scholar 

  32. Oh J, Baik J, Lim SH (2014) A model independent S/W framework for search-based software testing. Sci World J 2014:11. https://doi.org/10.1155/2014/126348

    Article  Google Scholar 

  33. Oren A (2002) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63. https://doi.org/10.1038/sj/jim/7000176

    Article  PubMed  CAS  Google Scholar 

  34. Ouyang PF, Wang H, Hajnal I, Wu Q, Guo YY, Chen GQ (2018) Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab Eng 45:20–31. https://doi.org/10.1016/j.ymben.2017.11.006

    Article  PubMed  CAS  Google Scholar 

  35. Panda AK, Khan RH, Rao K, Totey SM (1999) Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol 75:161–172. https://doi.org/10.1016/s0168-1656(99)00157-1

    Article  PubMed  CAS  Google Scholar 

  36. Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005

    Article  PubMed  CAS  Google Scholar 

  37. Qin Q, Ling C, Zhao Y, Yang T, Yin J, Guo Y, Chen GQ (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229. https://doi.org/10.1016/j.ymben.2018.03.018

    Article  PubMed  CAS  Google Scholar 

  38. Quillaguaman J, Guzman H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. https://doi.org/10.1007/s00253-009-2397-6

    Article  PubMed  CAS  Google Scholar 

  39. Quillaguaman J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Micr 54:721–725. https://doi.org/10.1099/ijs.0.02800-0

    Article  CAS  Google Scholar 

  40. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline syst 1:5. https://doi.org/10.1186/1746-1448-1-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemoth 57:609–618. https://doi.org/10.1093/jac/dkl024

    Article  CAS  Google Scholar 

  42. Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450. https://doi.org/10.1016/j.biotechadv.2010.02.006

    Article  PubMed  CAS  Google Scholar 

  43. Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313

    Article  PubMed  CAS  Google Scholar 

  44. Shivanand P, Mugeraya G, Kumar A (2013) Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Ann Microbiol 63:1257–1263. https://doi.org/10.1007/s13213-012-0583-8

    Article  CAS  Google Scholar 

  45. Silva-Rocha R, Martinez-Garcia E, Calles B, Chavarria M, Arce-Rodriguez A, de las Heras A, David Paez-Espino A, Durante-Rodriguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675. https://doi.org/10.1093/nar/gks1119

    Article  PubMed  CAS  Google Scholar 

  46. Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technol 102:8130–8136. https://doi.org/10.1016/j.biortech.2011.05.068

    Article  CAS  Google Scholar 

  47. Tanadchangsaeng N, Yu J (2012) Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol Bioeng 109:2808–2818. https://doi.org/10.1002/bit.24546

    Article  PubMed  CAS  Google Scholar 

  48. Tao W, Lv L, Chen GQ (2017) Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Fact 16:48. https://doi.org/10.1186/s12934-017-0655-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotech 30:59–65. https://doi.org/10.1016/j.copbio.2014.06.001

    Article  PubMed  CAS  Google Scholar 

  50. Wang ZH, Ma P, Chen J, Zhang J, Chen CB, Chen GQ (2011) A transferable heterogeneous two-hybrid system in Escherichia coli based on polyhydroxyalkanoates synthesis regulatory protein PhaR. Microb Cell Fact 10:21. https://doi.org/10.1186/1475-2859-10-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104. https://doi.org/10.1007/s00253-013-5285-z

    Article  PubMed  CAS  Google Scholar 

  52. Ye JW, Huang WZ, Wang DS, Chen FY, Yin J, Li T, Zhang HQ, Chen GQ (2018) Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol J 13:e1800074. https://doi.org/10.1002/biot.201800074

    Article  PubMed  CAS  Google Scholar 

  53. Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442. https://doi.org/10.1016/j.biotechadv.2014.10.008

    Article  PubMed  CAS  Google Scholar 

  54. Yin J, Fu XZ, Wu Q, Chen JC, Chen GQ (2014) Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp. Appl Microbiol Biotechnol 98:8987–8997. https://doi.org/10.1007/s00253-014-5959-1

    Article  PubMed  CAS  Google Scholar 

  55. Yue HT, Ling C, Yang T, Chen XB, Chen YL, Deng HT, Wu Q, Chen JL, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108. https://doi.org/10.1186/1754-6834-7-108

    Article  CAS  Google Scholar 

  56. Zhang LH, Lang YJ, Nagata S (2009) Efficient production of ectoine using ectoine-excreting strain. Extremophiles 13:717–724. https://doi.org/10.1007/s00792-009-0262-2

    Article  PubMed  CAS  Google Scholar 

  57. Zhao H, Wei H, Liu X, Yao Z, Xu M, Wei D, Wang J, Wang X, Chen GQ (2016) Structural insights on pha binding protein PhaP from Aeromonas hydrophila. Sci Rep 6:39424. https://doi.org/10.1038/srep39424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhao H, Zhang HM, Chen X, Li T, Wu Q, Ouyang Q, Chen GQ (2017) Novel T7-like expression systems used for Halomonas. Metab Eng 39:128–140. https://doi.org/10.1016/j.ymben.2016.11.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by National Natural Science Foundation of China (Grant No. 21761132013 and 31430003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Additional information

Submitted to “Journal of Industrial Microbiology and Biotechnology” (JIMB) for the Special Issue on “Synthetic Biology for the Biotechnology Industry”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yu, L., Qiao, G. et al. Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol 45, 545–554 (2018). https://doi.org/10.1007/s10295-018-2055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2055-z

Keywords

Navigation