Skip to main content
Log in

Genomic and metabolomic analysis of Bacillus licheniformis with enhanced poly-γ-glutamic acid production through atmospheric and room temperature plasma mutagenesis

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid is an extracellular polymeric substance with various applications owing to its valuable properties of biodegradability, flocculating activity, water solubility, and nontoxicity. However, the ability of natural strains to produce poly-γ-glutamic acid is low. Atmospheric and room temperature plasma was applied in this study to conduct mutation breeding of Bacillus licheniformis CGMCC 2876, and a mutant strain M32 with an 11% increase in poly-γ-glutamic acid was obtained. Genome resequencing analysis identified 7 nonsynonymous mutations of ppsC encoding lipopeptide synthetase associated with poly-glutamic acid metabolic pathways. From molecular docking, more binding sites and higher binding energy were speculated between the mutated plipastatin synthase subunit C and glutamate, which might contribute to the higher poly-glutamic acid production. Moreover, the metabolic mechanism analysis revealed that the upregulated amino acids of M32 provided substrates for glutamate and promoted the conversion between l- and d-glutamate acids. In addition, the glycolytic pathway is enhanced, leading to a better capacity for using glucose. The maximum poly-γ-glutamic acid yield of 14.08 g·L−1 was finally reached with 30 g·L−1 glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li D, Hou L, Gao Y, Tian Z, Fan B, Wang F, Li S. Recent advances in microbial synthesis of poly-γ-glutamic acid: a review. Foods, 2022, 11(5): 1–19

    Article  Google Scholar 

  2. Cao M, Feng J, Sirisansaneeyakul S, Song C, Chisti Y. Genetic and metabolic engineering for microbial production of poly-glutamic acid. Biotechnology Advances, 2018, 36(5): 1424–1433

    Article  CAS  Google Scholar 

  3. Zhan Y Y, Zhu C J, Sheng B J, Cai D B, Wang Q, Wen Z Y, Chen S W. Improvement of glycerol catabolism in Bacillus licheniformis for production of poly-γ-glutamic acid. Applied Microbiology and Biotechnology, 2017, 101(19): 7155–7164

    Article  CAS  Google Scholar 

  4. Tian G, Fu J, Wei X, Ji Z, Ma X, Qi G, Chen S. Enhanced expression of pgdS gene for high production of poly-γ-glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(12): 1825–1832

    Article  CAS  Google Scholar 

  5. Li B C, Cai D B, Hu S Y, Zhu A T, He Z L, Chen S W. Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Bacillus licheniformis 1-pyrroline-5-carboxylate dehydrogenase gene ycgN-deficient strain. Applied Microbiology and Biotechnology, 2018, 102(23): 10127–10137

    Article  CAS  Google Scholar 

  6. Cai D B, Chen Y Z, He P H, Wang S Y, Mo F, Li X, Wang Q, Nomura C T, Wen Z Y, Ma X, Chen S. Enhanced production of poly-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering, 2018, 115(10): 2541–2553

    Article  CAS  Google Scholar 

  7. Ottenheim C, Nawrath M, Wu J C. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Bioresources and Bioprocessing, 2018, 5(12): 1–12

    Google Scholar 

  8. Jiang T, Qiao H, Zheng Z J, Chu Q L, Li X, Yong Q, Ouyang J. Lactic acid production from petreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PLoS One, 2016, 11(2): e0149101

    Article  Google Scholar 

  9. Qiu C G, Zhang A, Tao S, Li K, Chen K Q, Ouyang P K. Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system. Frontiers of Chemical Science and Engineering, 2020, 14(5): 793–801

    Article  CAS  Google Scholar 

  10. Qiu Y B, Zhang Y T, Zhu Y F, Sha Y Y, Xu Z Q, Feng X H, Li S, Xu H. Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing. Bioprocess and Biosystems Engineering, 2019, 42(10): 1711–1720

    Article  CAS  Google Scholar 

  11. Yu W, Chen Z, Ye H, Liu P, Li Z, Wang Y, Li Q, Yan S, Zhong C J, He N. Effect of glucose on poly-glutamic acid metabolism in Bacillus licheniformis. Microbial Cell Factories, 2017, 16(1): 22

    Article  Google Scholar 

  12. Chen Z, Liu P, Li Z, Yu W, Wang Z, Yao H, Wang Y, Li Q, Deng X, He N. Identification of key genes involved in polysaccharide bioflocculant synthesis in Bacillus licheniformis. Biotechnology and Bioengineering, 2017, 114(3): 645–655

    Article  CAS  Google Scholar 

  13. Liu P, Chen Z, Yang L, Li Q, He N. Increasing the bioflocculant production and identifying the effect of overexpressing epsB on the synthesis of polysaccharide and γ-PGA in Bacillus licheniformis. Microbial Cell Factories, 2017, 16(1): 163

    Article  Google Scholar 

  14. Xiong Y, Wang Y, Yu Y, Li Q, Wang H, Chen R, He N. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Applied and Environmental Microbiology, 2010, 76(9): 2778–2782

    Article  CAS  Google Scholar 

  15. Chen Z, Meng T, Li Z, Liu P, Wang Y, He N, Liang D. Characterization of a beta-glucosidase from Bacillus licheniformis and its effect on bioflocculant degradation. AMB Express, 2017, 7(1): 197

    Article  Google Scholar 

  16. Li H, Durbin R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics (Oxford, England), 2009, 25(14): 1754–1760

    Article  CAS  Google Scholar 

  17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome Project Data P. The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England), 2009, 25(16): 2078–2079

    Article  Google Scholar 

  18. Rahim F, Ullah H, Javid M T, Wadood A, Taha M, Ashraf M, Shaukat A, Junaid M, Hussain S, Rehman W, Mehmood R, Sajid M, Khan M N, Khan K M. Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorganic Chemistry, 2015, 62: 15–21

    Article  CAS  Google Scholar 

  19. Sadiq F A, Yan B W, Zhao J X, Zhang H, Chen W. Untargeted metabolomics reveals metabolic state of Bifidobacterium bifidum in the biofilm and planktonic states. LWT, 2020, 118: 108772–108779

    Article  CAS  Google Scholar 

  20. Cao S, Zhou X, Jin W B, Wang F, Tu R J, Han S F, Chen H Y, Chen C, Xie G J, Ma F. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 2017, 244: 1400–1406

    Article  CAS  Google Scholar 

  21. Fang M Y, Jin L H, Zhang C, Tan Y Y, Jiang P X, Ge N, Li H P, Xing X H. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One, 2013, 8(10): e77046

    Article  CAS  Google Scholar 

  22. Wang L Y, Huang Z L, Li G, Zhao H X, Xing X H, Sun W T, Li H P, Gou Z X, Bao C Y. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. Journal of Applied Microbiology, 2010, 108(3): 851–858

    Article  CAS  Google Scholar 

  23. Lilge L, Vahidinasab M, Adiek I, Becker P, Nesamani C K, Treinen C, Hoffmann M, Heravi K M, Henkel M, Hausmann R. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. MicrobiologyOpen, 2021, 10(5): 1–10

    Article  Google Scholar 

  24. Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents and Chemotherapy, 1999, 43(9): 2183–2192

    Article  CAS  Google Scholar 

  25. Stein T, Kluge B, Vater J, Franke P, Otto A, Wittmannliebold B. Gramicidin-S synthetase-1 (phenylalanine racemase), a prototype of amino-acid racemases containing the cofactor 4′-phosphopantetheine. Biochemistry, 1995, 34(14): 4633–4642

    Article  CAS  Google Scholar 

  26. Bu X Z, Wu X M, Ng N L J, Mak C K, Qin C G, Guo Z H. Synthesis of gramicidin S and its analogues via an on-resin macrolactamization assisted by a predisposed conformation of the linear precursors. Journal of Organic Chemistry, 2004, 69(8): 2681–2685

    Article  CAS  Google Scholar 

  27. Liu H X, Gao L, Han J Z, Ma Z, Lu Z X, Dai C, Zhang C, Bie X M. Biocombinatorial synthesis of novel lipopeptides by COM domain-mediated reprogramming of the plipastatin NRPS complex. Frontiers in Microbiology, 2016, 7: 1801

    Article  Google Scholar 

  28. Heinzelmann E, Berger S, Puk O, Reichenstein B, Wohlleben W, Schwartz D. A glutamate mutase is involved in the biosynthesis of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Antimicrobial Agents and Chemotherapy, 2003, 47(2): 447–457

    Article  CAS  Google Scholar 

  29. Wang J Q, Guo R J, Wang W C, Ma G Z, Li S D. Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis. Journal of Industrial Microbiology & Biotechnology, 2018, 45(12): 1033–1044

    Article  CAS  Google Scholar 

  30. Qiu Y M, Wang Q, Zhu C J, Yang Q Q, Zhou S Y, Xiang Z W, Chen S W. Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-glutamic acid. Applied Microbiology and Biotechnology, 2019, 103(10): 4003–4015

    Article  CAS  Google Scholar 

  31. Farres M, Platikanov S, Tsakovski S, Tauler R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. Journal of Chemometrics, 2015, 29(10): 528–536

    Article  CAS  Google Scholar 

  32. Halmschlag B, Putri S P, Fukusaki E, Blank L M. Identification of key metabolites in poly-γ-glutamic acid production by tuning γ-PGA synthetase expression. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1–14

    Article  Google Scholar 

  33. Wu J Y, Liao J H, Shieh C J, Hsieh F C, Liu Y C. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1. Journal of Bioscience and Bioengineering, 2018, 126(5): 630–635

    Article  CAS  Google Scholar 

  34. Chen X Y, Sun H Z, Qiao B, Miao C H, Hou Z J, Xu S J, Xu Q M, Cheng J S. Improved the lipopeptide production of Bacillus amylìliquefaciens HM618 under co-culture with the recombinant Corynebacterium glutamicum producing high-level proline. Bioresource Technology, 2022, 349: 126863

    Article  CAS  Google Scholar 

  35. Klenchin V A, Schmidt D M, Gerlt J A, Rayment I. Evolution of enzymatic activities in the enolase superfamily: structure of a substrate-liganded complex of the L-Ala-D/L-Glu epimerase from Bacillus subtilis. Biochemistry, 2004, 43(32): 10370–10378

    Article  CAS  Google Scholar 

  36. Xu G Q, Zha J, Cheng H, Ibrahim M H A, Yang F, Dalton H, Cao R, Zhu Y X, Fang J H, Chi K J, Zheng P, Zhang X, Shi J, Xu Z, Gross R A, Koffas M A G. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-glutamic acid. Metabolic Engineering, 2019, 56: 39–49

    Article  Google Scholar 

  37. Zhang C, Wu D J, Qiu X L. Stimulatory effects of amino acids on γ-polyglutamic acid production by Bacillus subtilis. Scientific Reports, 2018, 8(1): 1–9

    Article  Google Scholar 

  38. Niu D D, Li C Y, Wang P, Huang L, McHunu N P, Singh S, Prior B A, Ye X Y. Twin-arginine signal peptide of Bacillus licheniformis GlmU efficiently mediated secretory expression of protein glutaminase. Electronic Journal of Biotechnology, 2019, 42: 49–55

    Article  CAS  Google Scholar 

  39. Zhang Q, Chen Y Z, Gao L, Chen J G, Ma X, Cai D B, Wang D, Chen S W. Enhanced production of poly-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis. Synthetic and Systems Biotechnology, 2022, 7(1): 567–573

    Article  CAS  Google Scholar 

  40. Chaneton B, Hillmann P, Zheng L, Martin A C L, Maddocks O D K, Chokkathukalam A, Coyle J E, Jankevics A, Holding F P, Vousden K H, Frezza C, O’Reilly M, Gottlieb E. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491(7424): 458–462

    Article  CAS  Google Scholar 

  41. Yeh C M, Wang J P, Lo S C, Chan W C, Lin M Y. Chromosomal integration of a synthetic expression control sequence achieves poly-glutamate production in a Bacillus subtilis strain. Biotechnology Progress, 2010, 26(4): 1001–1007

    CAS  Google Scholar 

  42. Sha Y Y, Sun T, Qiu Y B, Zhu Y F, Zhan Y J, Zhang Y T, Xu Z Q, Li S, Feng X H, Xu H. Investigation of glutamate dependence mechanism for poly-glutamic acid production in Bacillus subtilis on the basis of transcriptome analysis. Journal of Agricultural and Food Chemistry, 2019, 67(22): 6263–6274

    Article  CAS  Google Scholar 

  43. Fukushima T, Uchida N, Ide M, Kodama T, Sekiguchi J. DL-endopeptidases function as both cell wall hydrolases and poly-glutamic acid hydrolases. Microbiology (Reading, England), 2018, 164(3): 277–286

    Article  CAS  Google Scholar 

  44. Hoffmann S L, Jungmann L, Schiefelbein S, Peyriga L, Cahoreau E, Portais J C, Becker J, Wittmann C. Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47: 475–487

    Article  CAS  Google Scholar 

  45. Israelsen W J, Vander Heiden M G. Pyruvate kinase: function, regulation and role in cancer. Seminars in Cell & Developmental Biology, 2015, 43: 43–51

    Article  CAS  Google Scholar 

  46. Sonenshein A L. Control of key metabolic intersections in Bacillus subtilis. Nature Reviews. Microbiology, 2007, 5(12): 917–927

    CAS  Google Scholar 

  47. Yu W, Chen Z, Shen L, Wang Y, Li Q, Yan S, Zhong C J, He N. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants. Biotechnology and Bioengineering, 2016, 113(4): 797–806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 32170061 and 31871779).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingbiao Li or Ning He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Yang, L., Wang, H. et al. Genomic and metabolomic analysis of Bacillus licheniformis with enhanced poly-γ-glutamic acid production through atmospheric and room temperature plasma mutagenesis. Front. Chem. Sci. Eng. 16, 1751–1760 (2022). https://doi.org/10.1007/s11705-022-2211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2211-x

Keywords

Navigation