Skip to main content
Log in

Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙L−1 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙L−1). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an OD600 of 40,150 mg∙L−1 naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg-L−1 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Back R C. Carbamate insecticides, significant developments in eight years with sevin insecticides. Journal of Agricultural and Food Chemistry, 1965, 13(3): 198–199

    Article  CAS  Google Scholar 

  2. Canada K A, Sachiyo I, Shim H, Wood T K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. Journal of Bacteriology, 2002, 184(2): 344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molina-Espeja P, Cañellas M, Plou F J, Hofrichter M, Lucas F, Guallar V, Alcalde M. Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem, 2016, 17(4): 341–349

    Article  CAS  PubMed  Google Scholar 

  4. Zhang T Y, Yang Q S, Lu Z, Liu X, Wang Z, Li X X. Progress of catalytic synthesis of naphthol. Chemical Industry & Engineering Progress, 2009, 28(1): 55–61

    Google Scholar 

  5. Martínez A T, Ruiz-Duenas F J, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar O M, Hofrichter M, et al. Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances, 2017, 35(4): 1322–1332

    Google Scholar 

  6. Zhang A L, Wei G G, Mo X F, Zhou N, Chen K Q, Ouyang P K. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-D-glucosamine. Green Chemistry, 2018, 20(10): 2320–2327

    Article  CAS  Google Scholar 

  7. Tomás-Gallardo L, Gomezalvarez H, Santero E, Floriano B. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB. Microbial Biotechnology, 2014, 7(2): 100–113

    Article  PubMed  CAS  Google Scholar 

  8. Zeinali M, Vossoughi M, Ardestani S K. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere, 2008, 72(6): 905–909

    Article  CAS  PubMed  Google Scholar 

  9. Das M, Bhattacharya A, Banu S, Kotoky J. Enhanced biodegrada tion of anthracene by Bacillus cereus strain JMG-01 isolated from hydrocarbon contaminated soils. Soil & Sediment Contamination, 2017, 26(5): 510–525

    Article  CAS  Google Scholar 

  10. Liu L, Schmid R D, Urlacher V B. Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygen-ase from Rhodococcus ruber DSM 44319. Applied Microbiology and Biotechnology, 2006, 72(5): 876–882

    Article  CAS  PubMed  Google Scholar 

  11. Rui L Y, Kwon Y M, Fishman A, Reardon K F, Wood T K. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation. Applied and Environmental Microbiology, 2004, 70(6): 3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garikipati S V B J, Mciver A M, Peeples T L. Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Applied and Environmental Microbiology, 2009, 75(20): 6545–6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garikipati S V B J, Peeples T L. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering. Journal of Biotechnology, 2015, 210(1): 91–99

    Article  CAS  Google Scholar 

  14. Liu R M, Liang L Y, Cao W J, Wu M K, Chen K Q, Ma J F, Jiang M, Wei P, Ouyang P K. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresource Technology, 2013, 135(3): 574–577

    Article  CAS  PubMed  Google Scholar 

  15. Inoue M, Inoue T, Okami M, Sayama M, Hirai Y. ChemInform abstract: Bacterial oxidation of naphthalene to 1-naphthol. ChemInform, 2010, 26(1): 1315–1316

    Article  Google Scholar 

  16. Inoue T, Yasuyoshi T, Morishita N, Sayama M, Inoue M. Oxydation of polycyclic aromatic hydrocarbons in the presence of bacteria. Nippon Kagaku Kaishi, 1998, (3): 196–200

    Google Scholar 

  17. Wang M Z, Yang Y, Chen Z H, Chen Y Z, Wen Y M, Chen B L. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresource Technology, 2016, 222: 130–138

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, He M L, Zou S M, Fei C, Yan Y Q, Zheng S Y, Rajper A A, Wang C H. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation. Bioresource Technology, 2016, 207: 268–275

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Zhang X M, Xu G Q, Zhang X J, Shi J S, Xu Z H. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(4): 1–13

    Article  CAS  Google Scholar 

  20. Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 2004, 233(1): 81–86

    Article  CAS  Google Scholar 

  21. Li G, Li H P, Wang L Y, Wang S, Zhao H X, Xin W T. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Applied Physics Letters, 2008, 92(22): 221504

    Article  CAS  Google Scholar 

  22. Dong W L, Wang F, Huang F, Wang Y, Zhou J, Ye X, Li Z K, Hou Y, Huang Y, Ma J, Jiang M, Cui Z. Metabolic pathway involved in 6-chloro-2-benzoxazolinone degradation by Pigmentiphaga sp. strain DL-8 and identification of the novel metal-dependent hydrolase CbaA. Applied and Environmental Microbiology, 2016, 82(14): 4169–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brosius J, Dull T J, Sleeter D D, Noller H F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Journal of Molecular Biology, 1981, 148(2): 107–127

    Article  CAS  PubMed  Google Scholar 

  26. Hao Z K, Cai Y J, Liao X R, Liang X H, Liu J Y, Fang Z Y, Hu M M, Zhang D B. Chitinolyticbacter meiyuanensis SYBC-H1T, Gen. Nov., sp. Nov., a chitin-degrading bacterium isolated from soil. Current Microbiology, 2011, 62(6): 1732–1738

    Article  CAS  PubMed  Google Scholar 

  27. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTA X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(25): 4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vralstad T, Myhre E, Schumacher T. Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the helotiales in burnt and metal polluted habitats. New Phytologist, 2002, 105(1): 131–148

    Article  Google Scholar 

  29. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer K H. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis, 2010, 19(4): 554–568

    Article  Google Scholar 

  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16(2): 111–120

    Article  CAS  PubMed  Google Scholar 

  31. Norwitz G, Keliher P N. Effect of acidity and alkalinity on the distillation of phenol: Interferences of aromatic amines and formaldehyde with the 4-aminoantipyrine spectro-photometric method for phenol. Analytica Chimica Acta, 1980, 119(1): 99–111

    Article  CAS  Google Scholar 

  32. Lu Y, Wang L Y, Ma K, Li G, Zhang C, Zhao H X, Lai Q H, Li H P, Xing X H. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochemical Engineering Journal, 2011, 55(1): 17–22

    Article  CAS  Google Scholar 

  33. Cao S, Zhou X, Jin W B, Wang F, Tu R J, Han S F, Chen H Y, Chen C, Xie G J, Ma F. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 2017, 244(2): 1400–1406

    Article  CAS  PubMed  Google Scholar 

  34. Gu C K, Wang G Y, Mai S, Wu P F, Wu J R, Wang G H, Liu H J, Zhang J A. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Applied Microbiology and Biotechnology, 2017, 101(5): 2189–2199

    Article  CAS  PubMed  Google Scholar 

  35. Cao X M, Luo Z S, Zeng W Z, Xu S, Zhao L Q, Zhou J W. Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Applied Microbiology and Biotechnology, 2018, 102(2): 703–712

    Article  CAS  PubMed  Google Scholar 

  36. Li H Y, Zeng W Z, Zhou J W. High-throughput screening of Methylobacterium extorquens for high production of pyrroloquino-line quinone. Chinese Journal of Biotechnology, 2018, 34(5): 794–802

    PubMed  Google Scholar 

  37. Zhang X, Zhang X M, Xu G Q, Zhang X, Shi J, Xu Z. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(14): 5939–5951

    Article  CAS  PubMed  Google Scholar 

  38. Wang L Y, Huang Z L, Li G, Zhao H X, Xing X H, Sun W T, Li H P, Gou Z X, Bao C Y. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. Journal of Applied Microbiology, 2010, 108(3): 851–858

    Article  CAS  PubMed  Google Scholar 

  39. Hassanshahian M, Boroujeni N A. Enrichment and identification of naphthalene degrading bacteria from the Persian Gulf. Marine Pollution Bulletin, 2016, 107(1): 59–65

    Article  CAS  PubMed  Google Scholar 

  40. Tao Y, Bentley W E, Wood T K. Phenol and 2-naphthol production by toluene 4-monooxygenases using an aqueous/dioctyl phthalate system. Applied Microbiology and Biotechnology, 2005, 68(5): 614–621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by COVESTRO, the National Key Research and Development Program (Grant No. 2016YFA0204300), the Jiangsu Province Natural Science Foundation for Youths (No. BK20170997), and China Postdoctoral Science Foundation (Nos. 2018M642237 and 2017T100359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kequan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Zhang, A., Tao, S. et al. Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system. Front. Chem. Sci. Eng. 14, 793–801 (2020). https://doi.org/10.1007/s11705-019-1876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1876-2

Keywords

Navigation