Skip to main content
Log in

Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This work reports on a simple microfluidic strategy to controllably fabricate uniform polymeric microparticles containing hierarchical porous structures integrated with highly accessible catalytic metal organic frameworks for efficient degradation of organic contaminants. Monodisperse (W1/O)/W2 emulsion droplets generated from microfluidics are used as templates for the microparticle synthesis. The emulsion droplets contain tiny water microdroplets from homogenization and water nanodroplets from diffusion-induced swollen micelles as the dual pore-forming templates, and Fe-based metal-organic framework nanorods as the nanocatalysts. The obtained microparticles possess interconnected hierarchical porous structures decorated with highly accessible Fe-based metal-organic framework nanorods for enhanced degradation of organic contaminants via a heterogeneous Fenton-like reaction. Such a degradation performance is highlighted by using these microparticles for efficient degradation of rhodamine B in hydrogen peroxide solution. This work provides a simple and general strategy to flexibly combine hierarchical porous structures and catalytic metal-organic frameworks to engineer advanced microparticles for water decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867

    Article  CAS  Google Scholar 

  2. Xiao F, Ren H, Zhou H, Wang H, Wang N, Pan D. Porous montmorillonite@graphene oxide@Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials, 2019, 2(9): 5420–5429

    Article  CAS  Google Scholar 

  3. Liu Y, Wang C, Veder J P, Saunders M, Tade M, Wang S, Shao Z. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530: 556–566

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Zhou L, Song Y, Yu X, Li X, Liu Y, Zhang Z, Yuan Y, Yan S, Zhang J. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal. Carbohydrate Polymers, 2021, 270: 118340

    Article  CAS  PubMed  Google Scholar 

  5. Zeng L, Guo X, He C, Duan C. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6(11): 7935–7947

    Article  CAS  Google Scholar 

  6. Jiao L, Wang Y, Jiang H L, Xu Q. Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 2018, 30(37): e1703663

    Article  PubMed  CAS  Google Scholar 

  7. Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46(1): 126–157

    Article  CAS  PubMed  Google Scholar 

  8. Chen L Y, Tsumori N, Xu Q. Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63(11): 1601–1607

    Article  CAS  Google Scholar 

  9. Zhang C, Ai L, Jiang J. Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(6): 1–8

    Google Scholar 

  10. Zhao H, Chen Y, Peng Q, Wang Q, Zhao G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Applied Catalysis B: Environmental, 2017, 203: 127–137

    Article  CAS  Google Scholar 

  11. Tanaka S, Miyashita R. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2(10): 6437–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen L, Zhang M J, Zhang S Y, Shi L, Yang Y M, Liu Z, Ju X J, Xie R, Wang W, Chu L Y. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation. ACS Applied Materials & Interfaces, 2020, 12(31): 35120–35131

    Article  CAS  Google Scholar 

  13. Mosleh S, Rahimi M R. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35: 449–457

    Article  PubMed  Google Scholar 

  14. Xue Y, Wang P, Wang C, Ao Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203: 497–505

    Article  CAS  PubMed  Google Scholar 

  15. Li G P, Zhang K, Li C B, Gao R C, Cheng Y, Hou L, Wang Y Y. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Applied Catalysis B: Environmental, 2019, 245: 753–759

    Article  CAS  Google Scholar 

  16. Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2(3): 1500006

    Google Scholar 

  17. Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low Z X, Yao J, Wang H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8(14): 9080–9087

    Article  CAS  Google Scholar 

  18. Huang L, He M, Chen B, Hu B. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199: 435–444

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M J, Wang W, Yang X L, Ma B, Liu Y M, Xie R, Ju X J, Liu Z, Chu L Y. Uniform microparticles with controllable highly interconnected hierarchical porous structures. ACS Applied Materials & Interfaces, 2015, 7(25): 13758–13767

    Article  CAS  Google Scholar 

  20. Su Y Y, Zhang M J, Wang W, Deng C F, Peng J, Liu Z, Faraj Y, Ju X J, Xie R, Chu L Y. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Industrial & Engineering Chemistry Research, 2019, 58(4): 1590–1600

    Article  CAS  Google Scholar 

  21. Ataei-Germi T, Nematollahzadeh A. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 2016, 470: 172–182

    Article  CAS  PubMed  Google Scholar 

  22. Zhang M J, Chen T, Zhang P, Li Z L, Chen L, Su Y Y, Qiu L D, Peng G, Wang W, Chu L Y. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16(10): 2581–2593

    Article  CAS  PubMed  Google Scholar 

  23. Yu C, Zhu W, He Z, Xu J, Fang F, Gao Z, Ding W, Wang Y, Wang J, Wang J, Huang A, Cheng A, Wei Y, Ai S. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126255

    Article  CAS  Google Scholar 

  24. Yu D, Li L, Wu M, Crittenden J C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251: 66–75

    Article  CAS  Google Scholar 

  25. Zhang Y, Zhou J, Chen X, Wang L, Cai W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chemical Engineering Journal, 2019, 369: 745–757

    Article  CAS  Google Scholar 

  26. Xie A, Cui J, Yang J, Chen Y, Lang J, Li C, Yan Y, Dai J. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264: 118548

    Article  CAS  Google Scholar 

  27. Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 2014, 43(9): 3792–3798

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of magnetic Fe(3)O(4)/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials, 2019, 9(1): 51

    Article  PubMed Central  CAS  Google Scholar 

  29. Liao X, Wang F, Wang F, Cai Y, Yao Y, Teng B T, Hao Q, Lu S. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Applied Catalysis B: Environmental, 2019, 259: 118064

    Article  CAS  Google Scholar 

  30. Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, Wu M. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221: 119–128

    Article  CAS  Google Scholar 

  31. Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46(47): 8970–8974

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Hole-shell microparticles from controllably evolved double emulsions. Angewandte Chemie International Edition, 2013, 52(31): 8084–8087

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Zhang L Y, Ge X H, Xu B Y, Zhang W X, Qu L L, Choi C H, Xu J H, Zhang A, Lee H M, Weitz D A. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47(15): 5646–5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Xie R, Ju X J, Luo T, Liu L, Weitz D A, Chu L Y. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11(9): 1587–1592

    Article  CAS  PubMed  Google Scholar 

  35. Liu W Y, Wang W, Ju X J, Liu Z, Xie R, Chu L Y. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231: 116242

    Article  CAS  Google Scholar 

  36. Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47(2): 373–384

    Article  CAS  PubMed  Google Scholar 

  37. Wang B J, Prinsen P, Wang H Z, Bai Z S, Wang H L, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46(3): 855–914

    Article  CAS  PubMed  Google Scholar 

  38. Gao Y, Li S, Li Y, Yao L, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202: 165–174

    Article  CAS  Google Scholar 

  39. Tang J, Wang J. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environmental Science & Technology, 2018, 52(9): 5367–5377

    Article  CAS  Google Scholar 

  40. Yuan R, Qiu J, Yue C, Shen C, Li D, Zhu C, Liu F, Li A. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401: 126020

    Article  CAS  Google Scholar 

  41. Hu X, Li R, Zhao S, Xing Y. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Applied Surface Science, 2017, 396: 1393–1402

    Article  CAS  Google Scholar 

  42. Lian Z, Wei C, Gao B, Yang X, Chan Y, Wang J, Chen G Z, Koh K S, Shi Y, Yan Y, Ren Y, He J, Liu F. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10(16): 9210–9225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 21922809, 22108186, and 21991101), and the Sichuan Science and Technology Program (Grant No. 2019YJ0528).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mao-Jie Zhang or Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Li, YH., Chen, L. et al. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants. Front. Chem. Sci. Eng. 16, 939–949 (2022). https://doi.org/10.1007/s11705-022-2152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2152-4

Keywords

Navigation