Skip to main content
Log in

A review on emulsification via microfluidic processes

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Emulsion is a disperse system with two immiscible liquids, which demonstrates wide applications in diverse industries. Emulsification technology has advanced well with the development of microfluidic process. Compared to conventional methods, the microfluidics-based process can produce controllable droplet size and distribution. The droplet formation or breakup is the result of combined effects resulting from interfacial tension, viscous, and inertial forces as well as the forces generated due to hydrodynamic pressure and external stimuli. In the current study, typical microfluidic systems, including microchannel array, T-shape, flow-focusing, co-flowing, and membrane systems, are reviewed and the corresponding mechanisms, flow regimes, and main parameters are compared and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao C X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews, 2013, 65(11–12): 1420–1446

    CAS  PubMed  Google Scholar 

  2. Ran R, Sun Q, Baby T, Wibowo D, Middelberg A P, Zhao C X. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications. Chemical Engineering Science, 2017, 169: 78–96

    CAS  Google Scholar 

  3. Maeki M. Microfluidics for pharmaceutical applications. Microfluidics for Pharmaceutical Applications. Amsterdam: Elsevier, 2019, 101–119

    Google Scholar 

  4. Muijlwijk K, Berton-Carabin C, Schroën K. Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science & Technology, 2016, 49: 51–63

    CAS  Google Scholar 

  5. Gunes D Z. Microfluidics for food science and engineering. Current Opinion in Food Science, 2018, 21: 57–65

    Google Scholar 

  6. Gilbert L, Picard C, Savary G, Grisel M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, 421: 150–163

    CAS  Google Scholar 

  7. Ferreira A, Vecino X, Ferreira D, Cruz J, Moldes A, Rodrigues L. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces. B, Biointerfaces, 2017, 155: 522–529

    CAS  PubMed  Google Scholar 

  8. Preetika R, Mehta P S, Kaisare N S, Basavaraj M G. Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels. Fuel, 2019, 236: 1415–1422

    CAS  Google Scholar 

  9. Sun G, Zhang J, Ma C, Wang X. Start-up flow behavior of pipelines transporting waxy crude oil emulsion. Journal of Petroleum Science Engineering, 2016, 147: 746–755

    CAS  Google Scholar 

  10. Zhang M, Wang W, Xie R, Ju X, Liu Z, Jiang L, Chen Q, Chu L. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology, 2016, 24: 18–31

    Google Scholar 

  11. Parker A P, Reynolds P A, Lewis A L, Hughes L. Semi-continuous emulsion co-polymerisation of methylmethacrylate and butylacrylate using zwitterionic surfactants as emulsifiers: Evidence of coagulative nucleation above the critical micelle concentration. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 268(1): 162–174

    CAS  Google Scholar 

  12. Wang L Y, Ma G H, Su Z G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. Journal of Controlled Release, 2005, 106(1–2): 62–75

    CAS  PubMed  Google Scholar 

  13. Choi C H, Jung J H, Kim D W, Chung Y M, Lee C S. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab on a Chip, 2008, 8(9): 1544

    CAS  PubMed  Google Scholar 

  14. Shah R K, Kim J W, Agresti J J, Weitz D A, Chu L Y. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter, 2008, 4(12): 2303

    CAS  Google Scholar 

  15. Singh D, Sharma R. Post harvest wax coating of kinnow fruits to retain quality during. Storage Agricultural Engineering Today, 2007, 31(2): 232–238

    Google Scholar 

  16. Cameron J C, Fischer C A, Lehman N C, Lindquist J S, Olson C E, Fox S A. Hot melt adhesive pellet comprising continuous coating of pelletizing aid. US Patent, 6120899, 2000-09-19

  17. Kabal’Nov A S, Pertzov A V, Shchukin E D. Ostwald ripening in two-component disperse phase systems: Application to emulsion stability. Colloids and Surfaces, 1987, 24(1): 19–32

    Google Scholar 

  18. Bibette J, Mason T G, Gang H, Weitz D A, Poulin P. Structure of adhesive emulsions. Langmuir, 1993, 9(12): 3352–3356

    CAS  Google Scholar 

  19. Mason T G. New fundamental concepts in emulsion rheology. Current Opinion in Colloid & Interface Science, 1999, 4(3): 231–238

    CAS  Google Scholar 

  20. Tiwary C, Kishore S, Vasireddi R, Mahapatra D, Ajayan P, Chattopadhyay K. Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Materials Today, 2017, 20(2): 67–73

    CAS  Google Scholar 

  21. Fernández-Ávila C, Escriu R, Trujillo A. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Research International, 2015, 75: 357–366

    PubMed  Google Scholar 

  22. Trujillo-Cayado L A, Alfaro M C, García M, Muñoz J. Comparison of homogenization processes for the development of green O/W emulsions formulated with N, N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46: 54–61

    CAS  Google Scholar 

  23. McClements D J. Food Emulsions: Principles, Practices, and Techniques. 3rd ed. Florida: CRC Press, 2015, 245–288

    Google Scholar 

  24. Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005, 77(3): 977–1026

    CAS  Google Scholar 

  25. Geczy R, Agnoletti M, Hansen M F, Kutter J P, Saatchi K, Häfeli U O. Microfluidic approaches for the production of monodisperse, superparamagnetic microspheres in the low micrometer size range. Journal of Magnetism and Magnetic Materials, 2019, 471: 286–293

    CAS  Google Scholar 

  26. Li Y, Wengerter M, Gerken I, Nieder H, Scholl S, Brandner J J. Development of an efficient emulsification process using miniaturized process engineering equipment. Chemical Engineering Research & Design, 2016, 108: 23–29

    CAS  Google Scholar 

  27. Li Y, Gerken I, Hensel A, Kraut M, Brandner J J. Development of a continuous emulsification process for a highly viscous dispersed phase using microstructured devices. Green Processing and Synthesis, 2013, 2(5): 499–507

    CAS  Google Scholar 

  28. Wennerstrom H, Balogh J, Olsson U. Interfacial tensions in microemulsions. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2006, 291(1–3): 69–77

    Google Scholar 

  29. Diez J, Gratton R, Thomas L, Marino B. Laplace pressure-driven drop spreading: Quasi-self-similar solution. Journal of Colloid and Interface Science, 1994, 168(1): 15–20

    CAS  Google Scholar 

  30. Lyklema J. Fundamentals of Interface and Colloid Science. 1st ed. Amsterdam: Elsevier, 2005, 1.1–1.1.6

    Google Scholar 

  31. Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 1999, 285(5424): 83–85

    CAS  PubMed  Google Scholar 

  32. Stone H A. Dynamics of drop deformation and breakup in viscous fluids. Annual Review of Fluid Mechanics, 1994, 26(1): 65–102

    Google Scholar 

  33. Stewart W E Jr, Dona C L G. Low Rayleigh number flow in a heat generating porous media. International Communications in Heat and Mass Transfer, 1986, 13(3): 281–294

    CAS  Google Scholar 

  34. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108–109: 303–318

    PubMed  Google Scholar 

  35. Kawakatsu T, Kikuchi Y, Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. Journal of the American Oil Chemists’ Society, 1997, 74(3): 317–321

    CAS  Google Scholar 

  36. Kawakatsu T, Komori H, Nakajima M, Kikuchi Y, Yonemoto T. Production of monodispersed oil-in-water emulsion using cross-flow-type silicon microchannel plate. Journal of Chemical Engineering of Japan, 1999, 32(2): 241–244

    CAS  Google Scholar 

  37. Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K, Nakajima M. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluidics and Nanofluidics, 2008, 4(3): 167–177

    Google Scholar 

  38. Kobayashi I, Uemura K, Nakajima M. CFD analysis of generation of soybean oil-in-water emulsion droplets using rectangular straight-through microchannels. Food Science and Technology Research, 2007, 13(3): 187–192

    Google Scholar 

  39. Kobayashi I, Mukataka S, Nakajima M. Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. Journal of Colloid and Interface Science, 2004, 279(1): 277–280

    CAS  PubMed  Google Scholar 

  40. Kobayashi I, Nakajima M, Nabetani H, Kikuchi Y, Shohno A, Satoh K. Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. Journal of the American Oil Chemists’ Society, 2001, 78(8): 797–802

    CAS  Google Scholar 

  41. Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fukita H. Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(8): 1639–1644

    CAS  Google Scholar 

  42. Sugiura S, Nakajima M, Tong J H, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103

    CAS  PubMed  Google Scholar 

  43. Sugiura S, Nakajima M, Seki M. Effect of channel structure on microchannel emulsification. Langmuir, 2002, 18(15): 5708–5712

    CAS  Google Scholar 

  44. Sugiura S, Nakajima M, Iwamoto S, Seki M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir, 2001, 17(18): 5562–5566

    CAS  Google Scholar 

  45. Sugiura S, Nakajima M, Kumazawa N, Iwamoto S, Seki M. Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. Journal of Physical Chemistry B, 2002, 106(36): 9405–9409

    CAS  Google Scholar 

  46. Sugiura S, Nakajima M, Seki M. Preparation of monodispersed emulsion with large droplets using microchannel emulsification. Journal of the American Oil Chemists’ Society, 2002, 79(5): 515–519

    CAS  Google Scholar 

  47. Treesuwan W, Neves M A, Uemura K, Nakajima M, Kobayashi I. Preparation characteristics of monodisperse oil-in-water emulsions by microchannel emulsification using different essential oils. LWT, 2017, 84: 617–625

    CAS  Google Scholar 

  48. De Menech M, Garstecki P, Jousse F, Stone H A. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161

    Google Scholar 

  49. Okushima S, Nisisako T, Torii T, Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20(23): 9905–9908

    CAS  PubMed  Google Scholar 

  50. Xu Q Y, Nakajima M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Applied Physics Letters, 2004, 85(17): 3726–3728

    CAS  Google Scholar 

  51. Xu J H, Li S W, Tan J, Wang Y J, Luo G S. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir, 2006, 22(19): 7943–7946

    CAS  PubMed  Google Scholar 

  52. Mora A E M, de Lima e Silva A L F, de Lima e Silva S M M. Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM. Chemical Engineering Science, 2019, 196: 514–526

    CAS  Google Scholar 

  53. Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166

    CAS  PubMed  Google Scholar 

  54. Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angewandte Chemie International Edition, 2005, 44(17): 2520–2523

    CAS  PubMed  Google Scholar 

  55. Günther A, Khan S A, Thalmann M, Trachsel F, Jensen K F. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 2004, 4(4): 278–286

    PubMed  Google Scholar 

  56. Sabri F, Lakis A A. Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression. Aerospace Science and Technology, 2011, 15 (4): 237–248

    Google Scholar 

  57. Xu J H, Li S W, Tan J, Wang Y J, Luo G S. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE Journal. American Institute of Chemical Engineers, 2006, 52(9): 3005–3010

    CAS  Google Scholar 

  58. Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006, 6(3): 437–446

    CAS  PubMed  Google Scholar 

  59. Zhao C X, Middelberg A P J. Two-phase microfluidic flows. Chemical Engineering Science, 2011, 66(7): 1394–1411

    CAS  Google Scholar 

  60. Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36(1): 381–411

    Google Scholar 

  61. Oishi M, Kinoshita H, Fujii T, Oshima M. Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. Journal of Physics: Conference Series, 2009, 147: 012061

    Google Scholar 

  62. De Menech M, Garstecki P, Jousse F, Stone H. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161

    Google Scholar 

  63. Van der Graaf S, Steegmans M, Van Der Sman R, Schroën C, Boom R. Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 266(1–3): 106–116

    CAS  Google Scholar 

  64. Oishi M, Kinoshita H, Oshima M, Fujii T. Investigation of micro droplet formation in a T-shaped junction using multicolor confocal micro PIV. In: Proceedings of MNHT2008. ASME, 2008, 297–301

  65. Li X B, Li F C, Yang J C, Kinoshita H, Oishi M, Oshima M. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 2012, 69(1): 340–351

    CAS  Google Scholar 

  66. Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601

    PubMed  Google Scholar 

  67. Rayleigh L. On the capillary phenomena of jets. Proceedings of the Royal Society of London, 1879, 29(196–199): 71–97

    Google Scholar 

  68. Xu J H, Luo G S, Li S W, Chen G G. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 2006, 6(1): 131–136

    CAS  PubMed  Google Scholar 

  69. Lignel S, Salsac A V, Drelich A, Leclerc E, Pezron I. Water-in-oil droplet formation in a flow-focusing microsystem using pressure- and flow rate-driven pumps. Colloids and Surfaces. A, Physico-chemical and Engineering Aspects, 2017, 531: 164–172

    CAS  Google Scholar 

  70. Hamlington B D, Steinhaus B, Feng J J, Link D, Shelley M J, Shen A Q. Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34(7): 861–870

    CAS  Google Scholar 

  71. Yobas L, Martens S, Ong W L, Ranganathan N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab on a Chip, 2006, 6(8): 1073–1079

    CAS  PubMed  Google Scholar 

  72. Moon B U, Abbasi N, Jones S G, Hwang D K, Tsai S S. Water-in-water droplets by passive microfluidic flow focusing. Analytical Chemistry, 2016, 88(7): 3982–3989

    CAS  PubMed  Google Scholar 

  73. Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003, 82(3): 364–366

    CAS  Google Scholar 

  74. Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device. Physics of Fluids, 2006, 18(12): 121512

    Google Scholar 

  75. Lee W, Walker L M, Anna S L. Impact of viscosity ratio on the dynamics of droplet breakup in a microfluidic flow focusing device. In: Co A, Leal L G, Colby R H, Giacomin A J, eds. XVth International Congress on Rheology—ety of Rheology 80th Annual Meeting. American Institute of Physics, 2008, 994–996

  76. Lee W, Walker L M, Anna S L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Physics of Fluids, 2009, 21(3): 032103

    Google Scholar 

  77. Anna S L. Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 2016, 48(1): 285–309

    Google Scholar 

  78. Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Physical Review Letters, 2005, 94(16): 164501

    PubMed  Google Scholar 

  79. Zhou C, Yue P, Feng J J. Formation of simple and compound drops in microfluidic devices. Physics of Fluids, 2006, 18(9): 092105

    Google Scholar 

  80. Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007, 40(19): R319–R336

    CAS  Google Scholar 

  81. Nunes J K, Tsai S S H, Wan J, Stone H A. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of Physics D: Applied Physics, 2013, 46(11): 114002–114020

    Google Scholar 

  82. Fu T, Wu Y, Ma Y, Li H Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84: 207–217

    CAS  Google Scholar 

  83. Wu P, Luo Z, Liu Z, Li Z, Chen C, Feng L, He L. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering, 2015, 23(1): 7–14

    CAS  Google Scholar 

  84. Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Monodisperse double emulsions generated from a micro-capillary device. Science, 2005, 308(5721): 537–541

    CAS  PubMed  Google Scholar 

  85. Utada A S, Fernandez-Nieves A, Stone H A, Weitz D A. Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters, 2007, 99(9): 094502

    PubMed  Google Scholar 

  86. Gañán-Calvo A M. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing. Journal of Fluid Mechanics, 2006, 553: 75–84

    Google Scholar 

  87. Deng C, Wang H, Huang W, Cheng S. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 1–8

    CAS  Google Scholar 

  88. Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004, 59(15): 3045–3058

    CAS  Google Scholar 

  89. Suryo R, Basaran O A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Physics of Fluids, 2006, 18 (8): 082102

    Google Scholar 

  90. Villermaux E, Hopfinger E. Periodically arranged co-flowing jets. Journal of Fluid Mechanics, 1994, 263: 63–92

    CAS  Google Scholar 

  91. Wu L, Chen Y. Visualization study of emulsion droplet formation in a coflowing microchannel. Chemical Engineering and Processing: Process Intensification, 2014, 85: 77–85

    CAS  Google Scholar 

  92. He Y, Battat S, Fan J, Abbaspourrad A, Weitz D A. Preparation of microparticles through co-flowing of partially miscible liquids. Chemical Engineering Journal, 2017, 320: 144–150

    CAS  Google Scholar 

  93. Hua J, Zhang B, Lou J. Numerical simulation of microdroplet formation in coflowing immiscible liquids. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(10): 2534–2548

    CAS  Google Scholar 

  94. Castro-hernández E, Gundabala V, Fernández-nieves A, Gordillo J M. Scaling the drop size in coflow experiments. New Journal of Physics, 2009, 11(7): 075021

    Google Scholar 

  95. Vladisavljevic G T, Williams R A. Manufacture of large uniform droplets using rotating membrane emulsification. Journal of Colloid and Interface Science, 2006, 299(1): 396–402

    CAS  PubMed  Google Scholar 

  96. Joscelyne S M, Tragardh G. Membrane emulsification—a literature review. Journal of Membrane Science, 2000, 169(1): 107–117

    CAS  Google Scholar 

  97. Charcosset C, Limayem I, Fessi H. The membrane emulsification process—a review. Journal of Chemical Technology & Biotechnology: International Research in Process. Environmental & Clean Technology, 2004, 79(3): 209–218

    CAS  Google Scholar 

  98. De Luca G, Sindona A, Giorno L, Drioli E. Quantitative analysis of coupling effects in cross-flow membrane emulsification. Journal of Membrane Science, 2004, 229(1–2): 199–209

    CAS  Google Scholar 

  99. Drioli E, Giorno L. Membrane operations. Simulation, 2009, 1: 1

    Google Scholar 

  100. Sharma S, Shukla P, Misra A, Mishra P R. Chapter 8. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective. In: Colloid & Interface Science in Pharmaceutical Research & Development. Amsterdam: Elsevier, 2014, 149–172

    Google Scholar 

  101. Schroder V, Behrend O, Schubert H. Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. Journal of Colloid and Interface Science, 1998, 202 (2): 334–340

    CAS  Google Scholar 

  102. Wang K, Lu Y C, Xu J H, Luo G S. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir, 2009, 25(4): 2153–2158

    CAS  PubMed  Google Scholar 

  103. Mozafarpour R, Koocheki A, Milani E, Varidi M. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 2019, 93: 361–373

    CAS  Google Scholar 

  104. van Dijke K, Kobayashi I, Schroen K, Uemura K, Nakajima M, Boom R. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2010, 9(1): 77–85

    CAS  Google Scholar 

  105. Wu N, Zhu Y, Leech P W, Sexton B A, Brown S, Easton C. Effects of surfactants on the formation of microdroplets in the flow focusing microfluidic device. In: Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE, 2007, 6799: U84–U91

    Google Scholar 

  106. Vlahovska P M, Danov K D, Mehreteab A, Broze G. Adsorption kinetics of ionic surfactants with detailed account for the electrostatic interactions. Journal of Colloid and Interface Science, 1997, 192(1): 194–206

    CAS  PubMed  Google Scholar 

  107. Sasaki M, Yasunaga T, Satake S, Ashida M. Kinetic studies on double relaxation of surfactant solutions using a capillary wave method. Bulletin of the Chemical Society of Japan, 1977, 50(12): 3144–3148

    CAS  Google Scholar 

  108. El-Abbassi A, Neves M A, Kobayashi I, Hafidi A, Nakajima M. Preparation and characterization of highly stable monodisperse argan oil-in-water emulsions using microchannel emulsification. European Journal of Lipid Science and Technology, 2013, 115(2): 224–231

    CAS  Google Scholar 

  109. Eggleton C D, Tsai T M, Stebe K J. Tip streaming from a drop in the presence of surfactants. Physical Review Letters, 2001, 87(4): 048302

    CAS  PubMed  Google Scholar 

  110. Bracco G, Holst B. Surface Science Techniques. 1st ed. Berlin: Springer, 2013, 3–34

    Google Scholar 

  111. Hu S, Ren X, Bachman M, Sims C E, Li G P, Allbritton N L. Surface-directed, graft polymerization within microfluidic channels. Analytical Chemistry, 2004, 76(7): 1865–1870

    CAS  PubMed  Google Scholar 

  112. Barrat J L, Bocquet L. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 1999, 112: 119–127

    CAS  Google Scholar 

  113. Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 2003, 90(14): 144505

    PubMed  Google Scholar 

  114. Nie Z, Seo M, Xu S, Lewis P C, Mok M, Kumacheva E, Whitesides G M, Garstecki P, Stone H A. Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5(5): 585–594

    CAS  Google Scholar 

  115. Fournanty S, Guer Y L, Omari K E, Dejean J P. Laminar flow emulsification process to control the viscosity reduction of heavy crude oils. Journal of Dispersion Science and Technology, 2008, 29 (10): 1355–1366

    CAS  Google Scholar 

  116. Farokhirad S, Lee T, Morris J F. Effects of inertia and viscosity on single droplet deformation in confined shear flow. Communications in Computational Physics, 2015, 13(3): 706–724

    Google Scholar 

  117. Eggers R. Industrial High Pressure Applications, Processes, Equipment and Safety. 1st ed. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2012, 97–122

    Google Scholar 

  118. Chwalek J M, Trauernicht D P, Delametter C N, Sharma R, Jeanmaire D L, Anagnostopoulos C N, Hawkins G A, Ambravaneswaran B, Panditaratne J C, Basaran O A. A new method for deflecting liquid microjets. Physics of Fluids, 2002, 14(6): L37–L40

    CAS  Google Scholar 

  119. Xu J H, Li S W, Tan J, Luo G S. Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 2008, 5(6): 711–717

    CAS  Google Scholar 

  120. Hong Y, Wang F. Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluidics and Nanofluidics, 2007, 3(3): 341–346

    CAS  Google Scholar 

  121. Wright P. The variation of viscosity with temperature. Physics Education, 1977, 12(5): 323–325

    Google Scholar 

  122. Wengerter M, Li Y, Nieder H, Brandner J J, Schoenitz M, Scholl S. Energy and resource efficient continuous production of a binder emulsion using microstructured devices. Chemical Engineering and Processing: Process Intensification, 2017, 122: 319–329

    CAS  Google Scholar 

  123. Fujiu K B, Kobayashi I, Neves M A, Uemura K, Nakajima M. Effect of temperature on production of soybean oil-in-water emulsions by microchannel emulsification using different emulsifiers. Food Science and Technology Research, 2011, 17 (2): 77–86

    Google Scholar 

  124. Mahajan R K, Chawla J, Bakshi M S. Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid & Polymer Science, 2004, 282(10): 1165–1168

    CAS  Google Scholar 

  125. Shinoda K, Arai H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. Journal of Physical Chemistry, 1964, 68(12): 3485–3490

    CAS  Google Scholar 

  126. Shinoda K, Saito H. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. Journal of Colloid and Interface Science, 1969, 30(2): 258–263

    CAS  Google Scholar 

  127. Stan C A, Tang S K Y, Whitesides G M. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Analytical Chemistry, 2009, 81(6): 2399–2402

    CAS  PubMed  Google Scholar 

  128. Tice J D, Lyon A D, Ismagilov R F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta, 2004, 507(1): 73–77

    CAS  Google Scholar 

  129. Nguyen N T, Ting T H, Yap Y F, Wong T N, Chai J C K, Ong W L, Zhou J, Tan S H, Yobas L. Thermally mediated droplet formation in microchannels. Applied Physics Letters, 2007, 91(8): 084102

    Google Scholar 

  130. Zhou Z, Kong T, Mkaouar H, Salama K N, Zhang J M. A hybrid modular microfluidic device for emulsion generation. Sensors and Actuators. A, Physical, 2018, 280: 422–428

    CAS  Google Scholar 

  131. Kanai T, Tsuchiya M. Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions. Chemical Engineering Journal, 2016, 290: 400–404

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB1103002 and 2018YFB0604304), Federal Ministry for Economic Affairs and Energy, Germany (No. 03ET1093C), Fundamental Research Funds for the Central Universities, China (No. 2017MS011), and the National Natural Science Foundation of China (Grant No. 51821004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Y., Hensel, A. et al. A review on emulsification via microfluidic processes. Front. Chem. Sci. Eng. 14, 350–364 (2020). https://doi.org/10.1007/s11705-019-1894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1894-0

Keywords

Navigation