Skip to main content

Part of the book series: Particle Technology Series ((POTS,volume 25))

Abstract

Oil and water don’t mix, that is what everyone knows….but if you are able to convince them; it is very well possible to produce stable emulsions. For this you need the right technology, of which examples will be presented in this chapter, focusing both on established equipment (high pressure homogenization, rotor-stator systems, ultrasound) and technology that is currently developed (microfluidic technology, hybrid systems). Based on the droplet size that is generated and the energy that is required to do so, the technologies will be compared. Besides, attention is given to the emulsion ingredients that stabilize the oil-water interface, and prevent instability of the emulsion through sedimentation, flocculation, and/or coalescence. The chapter concludes with a short outlook on methods that are currently developed to determine emulsion stability, which we expect to become very useful, not only for emulsions but also for derived products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anna, S.L., Bontoux, N., Stone, H.A.: Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82(3), 364–366 (2003)

    Article  ADS  Google Scholar 

  2. Arafat, A., Giesbers, M., Rosso, M., et al.: Covalent biofunctionalization of silicon nitride surfaces. Langmuir 23, 6233–6244 (2007)

    Article  Google Scholar 

  3. Arbuckle, W.S.: Emulsification. In: Hall, C.W., Farral, A.W., Rippen, A.L. (eds.) Encyclopaedia of Food Engineering, pp. 286–288. Avi Publication Company, Westport (1986)

    Google Scholar 

  4. Aryantia, N., Williams, R.A., Houa, R., et al.: Performance of rotating membrane emulsification for o/w production. Desalination 200, 572–574 (2006)

    Article  Google Scholar 

  5. Becher, P. (ed.): Encyclopedia of Emulsion Technology, vol. 1–4. Marcel Dekker, New York (1986)

    Google Scholar 

  6. Behrend, O., Schubert, H.: Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrason. Sonochem. 8, 271–276 (2001)

    Article  Google Scholar 

  7. Benech, R.O., Kheadr, E.E., Laridi, R., Lacroix, C., Fliss, I.: Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl. Environ. Microbiol. 68, 3683–3690 (2002)

    Article  Google Scholar 

  8. Bentley, B.J., Leal, L.G.: An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 176, 241–283 (1986)

    Article  ADS  Google Scholar 

  9. Berton-Carabin, C.C., Schroën, K.: Pickering emulsions for food applications: background, trends and challenges. Ann. Rev. Food Sci. Technol. 6, 263–272 (2015). doi:10.1146/annurev-food-081114-110822

    Google Scholar 

  10. Brennan, J.G.: Emulsification, mechanical procedures. In: Hall, C.W., Farral, A.W., Rippen, A.L. (eds.) Encyclopaedia of Food Engineering, pp. 288–291. Avi Publication Company, Westport (1986)

    Google Scholar 

  11. Canselier, J.P., Delmas, H., Wilhelm, A.M., et al.: Ultrasound emulsification-an overview. J. Dispers. Sci. Technol. 23(1–3), 333–349 (2002)

    Article  Google Scholar 

  12. Charcosset, C.: Preparation of emulsions and particles by membrane emulsification for the food processing industry. J. Food Eng. 92, 241–249 (2009)

    Article  Google Scholar 

  13. Charcosset, C., Limayem, I., Fessi, H.: The membrane emulsification process—a review. J. Chem. Technol. Biotechnol. 79, 209–218 (2004)

    Article  Google Scholar 

  14. Eisner, V.: Emulsion Processing with a Rotating Membrane (ROME). Dissertation ETH Zürich, number 17153 (2007).

    Google Scholar 

  15. Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N.: Encapsulation in the food industry. Int. J. Food Sci. Nutr. 50, 213–224 (1999)

    Article  Google Scholar 

  16. Gijsbertsen-Abrahamse, A.J., Van der Padt, A., Boom, R.M.: Status of cross-flow membrane emulsification and outlook for industrial application. J. Membr. Sci. 230, 149–159 (2004)

    Article  Google Scholar 

  17. Grace, H.P.: Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 14, 225–277 (1982)

    Article  Google Scholar 

  18. Guzey, D., McClements, D.J.: Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid. Interface. Sci. 128–130, 227–248 (2006)

    Article  Google Scholar 

  19. Hiemenz, P.C.: Principles of Colloid and Surface Chemistry. Marcel Dekker, New York (1986)

    Google Scholar 

  20. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry. M. Dekker, New York (1997)

    Google Scholar 

  21. Joscelyne, S.M., Trägårdh, G.: Membrane emulsification—a literature review. J. Membr. Sci. 169, 107–117 (2000)

    Article  Google Scholar 

  22. Karbstein, H., Schubert, H.: Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Proc. 34, 205–211 (1995)

    Article  Google Scholar 

  23. Kendall, G.: http://blogs.nottingham.ac.uk/malaysiaknowledgetransfer/2013/06/25/what-is-pharmaceutical-nanoemulsion/. Visited 14 October 2014.

  24. Kirby, C.F., Brooker, B.E., Law, B.A.: Accelerated ripening of cheese using liposome-encapsulated enzyme. Int. J. Food Sci. Technol. 22(4), 355–375 (1987)

    Article  Google Scholar 

  25. Kissling, K., Schütz, S., Piesche, M.: Numerical investigation of the flow field and the mechanisms of droplet deformation and break-up in a high-pressure homogenizer. Proceedings of the 8th World Congress Chemical Engeneering, Montreal (2009).

    Google Scholar 

  26. Kobayashi, I., Neves, M.A., Uemura, K., et al.: Production characteristics of uniform large soybean oil droplets by microchannel emulsification using asymmetric through-holes. Procedia. Food. Sci. 2011(1), 123–130 (2011)

    Article  Google Scholar 

  27. Kobayashi, I., Nakajima, M., Chun, K., et al.: Silicon array of elongated through-holes for monodisperse emulsion droplets. AICHE J. 48, 1639–1644 (2002)

    Article  Google Scholar 

  28. Köhler, K.: Simultanes Emulgieren und Mischen. Logos Verlag, Berlin (2010). ISBN 978-3-8325-2716-7

    Google Scholar 

  29. Köhler, K.: In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering’10. Springer, Heidelberg (2011)

    Google Scholar 

  30. Kooiman, K., Böhmer, M.R., Emmer, M.: Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. J. Control. Release 133, 109–118 (2009)

    Article  Google Scholar 

  31. Krebs, T., Schroën, K., Boom, R.: Coalescence dynamics of surfactant-stabilized emulsions studied with microfluidics. Soft Matter 8(41), 10650–10657 (2012)

    Article  ADS  Google Scholar 

  32. Krebs, T., Ershov, D., Schroen, C.G.P.H., et al.: Coalescence and compression in centrifuged emulsions studied with in situ optical microscopy. Soft Matter 9(15), 4026–4035 (2013)

    Article  ADS  Google Scholar 

  33. Krebs, T., Schroen, K., Boom, R.: A microfluidic method to study demulsification kinetics. Lab Chip 12(6), 1060–1070 (2012)

    Article  Google Scholar 

  34. Krog, N.J., Riisom, T.H., Larson, K.: Applications in food industry. In: Becher, P. (ed.) Encyclopedia of Emulsion Technology. Applications, vol. 2, pp. 58–127. Marcel Dekker, New York (1985)

    Google Scholar 

  35. Lambrich, U., Schubert, H.: Emulsification using microporous systems. J. Membr. Sci. 257, 76–84 (2005)

    Article  Google Scholar 

  36. Langton, M., Jordansson, E., Altskar, A., et al.: Microstructure and image analysis of mayonnaises. Food Hydrocoll. 13, 113–125 (1999)

    Article  Google Scholar 

  37. Leal-Calderon, F., Schmitt, V., Bibette, J.: Emulsion Science – Basic Principles, 2nd edn. Springer, New York (2007)

    Google Scholar 

  38. Lucassen-Reynders, E.H.: Dynamic interfacial properties in emulsification. In: Becher, P. (ed.) Encyclopedia of Emulsion Technology, vol. 4, pp. 63–90. Marcel Dekker, New York (1996)

    Google Scholar 

  39. Lyklema, J.: Fundamentals of Interface and Colloid Science. Academic, London (1991)

    Google Scholar 

  40. Maan, A.A., Schroën, K., Boom, R.: Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications (Review). J. Food Eng. 107(3–4), 334–346 (2011)

    Article  Google Scholar 

  41. Maan, A.A., Boom, R., Schroën, K.: Preparation of monodispersed oil-in-water emulsions through semi-metal microfluidic EDGE systems. Microfluid. Nanofluid. 14(5), 775–784 (2013)

    Article  Google Scholar 

  42. Maan, A.A., Schroën, K., Boom, R.: Monodispersed water-in-oil emulsions prepared with semi-metal microfluidic EDGE systems. Microfluid. Nanofluid. 14(1–2), 187–196 (2013)

    Article  Google Scholar 

  43. McClements, D.J.: Food Emulsions: Principles, Practices and Techniques. CRC Press, Boca Raton (2005)

    Google Scholar 

  44. McClements, D.J., Chanamai, R.: Physicochemical properties of mono disperse oil-in-water emulsions. J. Dispers. Sci. Technol. 23(1–3), 125–134 (2002)

    Google Scholar 

  45. Merkus, H.G.: Particle Size Measurements – Fundamentals, Practice, Quality. Springer, New York (2009)

    Google Scholar 

  46. Merkus, H.G., Meesters, G.M.H. (eds.): Particulate Products – Tailoring Properties for Optimal Performance. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  47. Muschiolik, G.: Multiple emulsions for food use. Curr. Opin. Colloid. Interface. Sci. 12, 213–220 (2007)

    Article  Google Scholar 

  48. Nakashima, T., Shimizu, M.: Porous glass from calcium alumino boro-silicate glass. Ceram. Jpn. 21, 408 (1986)

    Google Scholar 

  49. Nakashima, T., Shimizu, M., Kukizaki, M.: Membrane emulsification by microporous glass. Key Eng. Mater. 61–62, 513 (1991)

    Google Scholar 

  50. Nazir, A., Schroën, K., Boom, R.: Pre-mix emulsification: a review. J. Membr. Sci. 362(1–2), 1–11 (2010)

    Article  Google Scholar 

  51. Nazir, A., Schroën, K., Boom, R.: High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J. Membr. Sci. 383(1-2), 116–123 (2011)

    Article  Google Scholar 

  52. Nazir, A., Schroën, K., Boom, R.: The effect of pore geometry on premix membrane emulsifi-cation using nickel sieves having uniform pores. Chem. Eng. Sci. 93, 173–180 (2013)

    Article  Google Scholar 

  53. Nazir, A., Boom, R., Schroën, K.: Droplet break-up mechanism in premix emulsification using packed beds. Chem. Eng. Sci. 92, 190–197 (2013)

    Article  Google Scholar 

  54. Nisisako, T., Torii, T.: Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8, 287–293 (2008)

    Article  Google Scholar 

  55. Peng, S.J., Williams, R.A.: Controlled production of emulsions using a cross-flow membrane. Part I: droplet formation from a single pore. Trans. IChemE. 76, 894–901 (1998)

    Article  Google Scholar 

  56. Perrechil, F., Santana, R., Fasolin, L.H., et al.: Rheological and structural evaluations of commercial Italian salad dressings. Cienc. Tecnol. Aliment. 30(2), 477–482 (2010)

    Article  Google Scholar 

  57. Roos, Y.H., Fryer, P.J., Knorr, D., Schuchmann, H.P., Schroën, K., Schutyser, M.A.I., Trystram, G., Windhab, E.J.: Food engineering at multiple scales: case studies, challenges and the future—a European perspective. Food Eng Rev. doi:10.1007/s12393-015-9125-z (2015, in press)

  58. Rosso, M., Giesbers, M., Arafat, A., et al.: Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. Langmuir 25, 2172–2180 (2009)

    Article  Google Scholar 

  59. Sagis, L.M.C., De Ruiter, R., Rossier Miranda, F.J., et al.: Polymer microcapsules with a fiber-reinforced nanocomposite shell. Langmuir 24, 1608–1612 (2008)

    Article  Google Scholar 

  60. Sawalha, H., Purwanti, N., Rinzema, A.: Polylactide microspheres prepared by premix membrane emulsification – effects of solvent removal rate. J. Membr. Sci. 310, 484–493 (2008)

    Article  Google Scholar 

  61. Schadler, V., Windhab, E.J.: Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination 189, 130–135 (2006)

    Article  Google Scholar 

  62. Scholten, E.: Ice cream (Chapter 9). In: Merkus, H.G, Meesters, G.M.H. (eds.) Particulate Products – Tailoring Properties for Optimal Performance. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  63. Schröder, V., Behrend, O., Schubert, H.: Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. J. Colloid. Interface. Sci. 202, 334–340 (1998)

    Article  Google Scholar 

  64. Schröder, V., Schubert, H.: Production of emulsions using microporous, ceramic membranes. Coll. Surf A Phys. Eng. Asp. 152, 103–109 (1999)

    Article  Google Scholar 

  65. Schroën, K., Blyzniuk, O., Muijlwijk, K. et al.: Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production. Curr. Trends Food Sci. 3, 33–40 (2015)

    Google Scholar 

  66. Schubert, H., Armbruster, H.: Principles of formation and stability of emulsions. Int. Chem. Eng. 32, 14 (1992)

    Google Scholar 

  67. Schuchmann, H.P.: Food process engineering research and innovation in a fast changing world – paradigms/case studies. In: Advances in Food Process Engineering Research and Applications. Springer (2013).

    Google Scholar 

  68. Schuchmann, H.P., Hecht, L.L., Gedrat, M., et al.: High-pressure homogenization for the production of emulsions. In: Eggers, R. (ed.) Industrial High Pressure Applications. Processes, Equipment and Safety, pp. 97–118. Wiley-VCH Verlag, Weinheim (2012)

    Chapter  Google Scholar 

  69. Smulders, P.E.A.: Formation and Stability of Emulsions Made with Proteins and Peptides. PhD thesis. Wageningen University, Wageningen, The Netherlands (2000).

    Google Scholar 

  70. Steegmans, M.L.J., Schroën, C.G.P.H., Boom, R.M.: Characterization of emulsification at flat microchannel Y junctions. Langmuir 25, 3396–3401 (2009)

    Article  Google Scholar 

  71. Stillwell, M.T., Holdich, R.G., Kosvintsev, S.R., et al.: Stirred cell membrane emulsification and factors influencing dispersion drop size and uniformity. Ind. Eng. Chem. Res. 46, 965–972 (2007)

    Article  Google Scholar 

  72. Sugiura, S., Nakajima, M., Iwamoto, S., et al.: Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17, 5562–5566 (2001)

    Article  Google Scholar 

  73. Suzuki, K., Hayakawa, K., Hagura, Y.: Preparation of high concentration o/w and w/o emulsions by the membrane phase inversion emulsification using PTFE membranes. Food Sci. Technol. Res. 5, 234–238 (1999)

    Article  Google Scholar 

  74. Urban, K., Wagner, G., Schaffner, D., et al.: Rotor-stator and disc systems for emulsification processes. Chem. Eng. Technol. 29(1), 1–31 (2006)

    Article  Google Scholar 

  75. Van Dalen, G.: Determination of the water droplet size distribution of fat spreads using confocal scanning laser microscopy. J. Microsc. 208, 116–133 (2002)

    Article  MathSciNet  Google Scholar 

  76. Van der Graaf, S., Nisisako, T., Schroën, C.G.P.H., et al.: Lattice Boltzmann simulations of droplet formation in a T-shaped micro-channel. Langmuir 22, 4144–4152 (2006)

    Article  Google Scholar 

  77. Van der Graaf, S., Schroën, C.G.P.H., Boom, R.M.: Preparation of double emulsions by membrane emulsification—a review. J. Membr. Sci. 251, 7–15 (2005)

    Article  Google Scholar 

  78. Van der Graaf, S., Steegmans, M.L.J., Van der Sman, R.G.J., et al.: Droplet formation in a T-shaped microchannel junction: a model system for membrane emulsification. Coll. Surf. A Phys. Eng. Asp. 266, 106–116 (2005)

    Article  Google Scholar 

  79. Van der Zwan, E.A.: Emulsification with Microstructured Systems. Process Principles. PhD thesis. Wageningen University, Wageningen, The Netherlands (2008)

    Google Scholar 

  80. Van der Zwan, E.A., Schroën, C.G.P.H., Boom, R.M.: Pre-mix membrane emulsification by using a packed layer of glass beads. AICHE J. 54, 2190–2197 (2008)

    Article  Google Scholar 

  81. Van Dijke, K.C., De Ruiter, R., Schroën, K., et al.: The mechanism of droplet formation in microfluidic EDGE systems. Soft Matter 6, 321–330 (2010)

    Article  ADS  Google Scholar 

  82. Van Dijke, K.C., Schroën, C.G.P.H., Van der Padt, A., et al.: EDGE emulsification for food-grade dispersions. J. Food Eng. 97(3), 348–354 (2010)

    Article  Google Scholar 

  83. Van Dijke, K.C., Veldhuis, G., Schroën, C.G.P.H., et al.: Parallelized edge-based droplet generation (EDGE) devices. Lab Chip 9, 2824–2830 (2009)

    Article  Google Scholar 

  84. Van Rijn, C.J.M., Nano and Micro Engineered Membrane Technology. Membrane Science and Technology Series 10. Elsevier, Amsterdam. ISBN 0444514899, 9780444514899, 384 p (2004)

    Google Scholar 

  85. Van Rijn, C.J.M., Elwenspoek, M.C.: Micro filtration membrane sieve with silicon micro machining for industrial and biomedical applications. Proc. IEEE 29, 83–87 (1995)

    Google Scholar 

  86. Vladisavljevic, G.T., Schubert, H.: Preparation of emulsions with a narrow particle size distribution using microporous -alumina membranes. J. Disp. Sci. Technol. 24, 811–819 (2003)

    Article  Google Scholar 

  87. Vladisavljevic, G.T., Tesch, S., Schubert, H.: Preparation of water-in-oil emulsions using microporous polypropylene hollow fibers: influence of some operating parameters on droplet dize distribution. Chem. Eng. Process. 41, 231–238 (2002)

    Article  Google Scholar 

  88. Vladisavljevic, G.T., Williams, R.A.: Recent developments in manufacturing emulsions and particulate products using membranes. Adv. Colloid Interface. Sci. 113, 1–20 (2005)

    Article  Google Scholar 

  89. Vladisavljević, G.T., Kobayashi, I., Nakajima, M.: Production of uniform droplets using membrane, microchannel, and microfluidic emulsification devices. Microfluid. Nanofluid. 13, 151–178 (2012)

    Article  Google Scholar 

  90. Walstra, P.: Formation of emulsions. In: Becher, P. (ed.) Encyclopedia of Emulsion Technology. Basic aspects, vol. 1, pp. 58–127. Marcel Dekker, New York (1983)

    Google Scholar 

  91. Walstra, P.: Emulsion stability. In: Becher, P. (ed.) Encyclopedia of Emulsion Technology, vol. 4. Marcel Dekker, New York (1996)

    Google Scholar 

  92. Walstra, P.: Physical Chemistry of Foods. Marcel Dekker, New York (2003)

    Google Scholar 

  93. Walstra, P., Wouters, J.T.M., Geurts, T.J.: Dairy Science and Technology. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  94. Walstra, P., Smulders, P.E.A.: Emulsion formation. In: Binks, B.P. (ed.) Modern Aspects of Emulsion Science, pp. 56–99. The Royal Society of Chemistry, Cambridge (1998)

    Chapter  Google Scholar 

  95. Yuan, Q., Houa, R., Aryantia, N., et al.: Manufacture of controlled emulsions and particulates using membrane emulsification. Desalination 224, 215–220 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Schroën .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schroën, K., Berton-Carabin, C.C. (2016). Emulsification: Established and Future Technologies. In: Merkus, H., Meesters, G. (eds) Production, Handling and Characterization of Particulate Materials. Particle Technology Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-20949-4_8

Download citation

Publish with us

Policies and ethics