Skip to main content
Log in

Advances in fabricating double-emulsion droplets and their biomedical applications

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Double-emulsion droplets have found widespread applications in various engineering and biomedical fields because of their capability in encapsulating different components in each layer. The conventional double-emulsion method is the two-stage stirring emulsification method, which suffers from poor monodispersity and low encapsulation efficiency. With recent advances in microfabrication, some novel methods for fabricating double-emulsion droplets have been developed, including microfluidic emulsification (double-T-junction microchannel, double-cross-shaped microchannel and several three-dimensional microchannels), membrane emulsification and coaxial electrospraying. These methods have shown significantly improved droplet features (e.g., size, size uniformity, thickness of each layer, generation throughput capability). Herein, this paper first reviews the state-of-art approaches for fabricating double-emulsion droplets and discusses their advantages and disadvantages. The applications of double-emulsion droplets in biomedical fields, including cell encapsulation, drug delivery and controlled release, and synthetic biology are also discussed. In conclusion, future perspectives are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abate AR, Weitz DA (2011) Air-bubble-triggered drop formation in microfluidics. Lab Chip 11:1713–1716

    Article  Google Scholar 

  • Abate AR, Krummel AT, Lee D, Marquez M, Holtze C, Weitz DA (2008) Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab Chip 8:2157–2160

    Article  Google Scholar 

  • Abate AR, Thiele J, Weinhart M, Weitz DA (2010a) Patterning microfluidic device wettability using flow confinement. Lab Chip 10:1774–1776

    Article  Google Scholar 

  • Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA (2010b) High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci 107:19163–19166. doi:10.1073/pnas.1006888107

    Article  Google Scholar 

  • Abate AR, Thiele J, Weitz DA (2011) One-step formation of multiple emulsions in microfluidics. Lab Chip 11:253–258

    Article  Google Scholar 

  • Abeyewickreme A, Kwok A, McEwan JR, Jayasinghe SN (2009) Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency. Integr Biol 1:260–266

    Article  Google Scholar 

  • Abrahamse AJ, van Lierop R, van der Sman RGM, van der Padt A, Boom RM (2002) Analysis of droplet formation and interactions during cross-flow membrane emulsification. J Membr Sci 204:125–137. doi:10.1016/s0376-7388(02)00028-5

    Article  Google Scholar 

  • Aditya NP, Aditya S, Yang H, Kim HW, Park SO, Ko S (2015) Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem 173:7–13

    Article  Google Scholar 

  • Ahmad Z, Zhang HB, Farook U, Edirisinghe M, Stride E, Colombo P (2008) Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J R Soc Interface 5:1255–1261. doi:10.1098/rsif.2008.0247

    Article  Google Scholar 

  • Ahmad N, Ramsch R, Llinàs M, Solans C, Hashim R, Tajuddin HA (2014) Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloids Surf B 115:267–274. doi:10.1016/j.colsurfb.2013.12.013

    Article  Google Scholar 

  • Ambravaneswaran B, Subramani HJ, Phillips SD, Basaran OA (2004) Dripping-jetting transitions in a dripping faucet. Phys Rev Lett 93:034501

    Article  Google Scholar 

  • Arriaga LR, Datta SS, Kim SH, Amstad E, Kodger TE, Monroy F, Weitz DA (2014) Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small 10:950–956

    Article  Google Scholar 

  • Arumuganathar S, Irvine S, McEwan JR, Jayasinghe SN (2008) A novel direct aerodynamically assisted threading methodology for generating biologically viable microthreads encapsulating living primary cells. J Appl Polym Sci 107:1215–1225. doi:10.1002/app.27190

    Article  Google Scholar 

  • Bartolo D, Josserand C, Bonn D (2006) Nonlinear dynamics, fluid dynamics, classical optics, etc: singular jets and bubbles in drop impact. Phys Rev Lett 96:124501

    Article  Google Scholar 

  • Berkland C, Kim K, Pack DW (2001) Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release 73:59–74

    Article  Google Scholar 

  • Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501

    Article  Google Scholar 

  • Candéa TV, Monteiro FS, Tonon RV, Cabral LMC (2014) Effect of process variables on the production of flaxseed oil emulsions by cross-flow membrane emulsification. Food Eng Rev 7:258–264

    Article  Google Scholar 

  • Chan HF, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Leong KW (2013) Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 3. Art. ID 3462

  • Chang TMS (1964) Semipermeable microcapsules. Science 146:524–525

    Article  Google Scholar 

  • Chang F-C, Su Y-C (2008) Controlled double emulsification utilizing 3D PDMS microchannels. J Micromech Microeng 18:065018. doi:10.1088/0960-1317/18/6/065018

    Article  Google Scholar 

  • Chang CB, Wilking JN, Kim SH, Shum HC, Weitz DA (2015) Monodisperse emulsion drop microenvironments for bacterial biofilm growth. Small. doi:10.1002/smll.201403125

    Google Scholar 

  • Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79:209–218. doi:10.1002/jctb.969

    Article  Google Scholar 

  • Chen H, Li J, Wan J, Weitz DA, Stone HA (2013) Gas-core triple emulsions for ultrasound triggered release. Soft Matter 9:38–42

    Article  Google Scholar 

  • Chiarabelli C, Stano P, Luisi PL (2009) Chemical approaches to synthetic biology. Curr Opin Biotechnol 20:492–497. doi:10.1016/j.copbio.2009.08.004

    Article  Google Scholar 

  • Choi SW, Zhang Y, Xia Y (2009) Fabrication of microbeads with a controllable hollow interior and porous wall using a capillary fluidic device. Adv Funct Mater 19:2943–2949

    Article  Google Scholar 

  • Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133:90–95

    Article  Google Scholar 

  • Couder Y, Fort E, Gautier C-H, Boudaoud A (2005) From bouncing to floating: noncoalescence of drops on a fluid bath. Phys Rev Lett 94:177801

    Article  Google Scholar 

  • Couvreur P, Blanco-Prieto MJ, Puisieux F, Roques B, Fattal E (1997) Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides. Adv Drug Deliv Rev 28:85–96. doi:10.1016/S0169-409X(97)00052-5

    Article  Google Scholar 

  • Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    Article  Google Scholar 

  • Dorbolo S, Terwagne d, Vandewalle N, Gilet T (2008) Resonant and rolling droplet. New J Phys 10:113021

    Article  Google Scholar 

  • Dragosavac MM, Holdich RG, Vladisavljević GT, Sovilj MN (2012) Stirred cell membrane emulsification for multiple emulsions containing unrefined pumpkin seed oil with uniform droplet size. J Membr Sci 392:122–129

    Article  Google Scholar 

  • Dreyfus R, Tabeling P, Willaime H (2003) Ordered and disordered patterns in two-phase flows in microchannels. Phys Rev Lett. doi:10.1103/PhysRevLett.90.144505

    Google Scholar 

  • Erb RM, Obrist D, Chen PW, Studer J, Studart AR (2011) Predicting sizes of droplets made by microfluidic flow-induced dripping. Soft Matter 7:8757–8761

    Article  Google Scholar 

  • Fargnoli AS, Mu A, Katz MG et al (2014) Anti-inflammatory loaded poly-lactic glycolic acid nanoparticle formulations to enhance myocardial gene transfer: an in vitro assessment of a drug/gene combination therapeutic approach for direct injection. J Transl Med 12:171

    Article  Google Scholar 

  • Farook U, Stride E, Edirisinghe M, Moaleji R (2007) Microbubbling by co-axial electrohydrodynamic atomization. Med Biol Eng Comput 45:781–789. doi:10.1007/s11517-007-0210-1

    Article  Google Scholar 

  • Fraker CA, Mendez AJ, Inverardi L, Ricordi C, Stabler CL (2012) Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids Surf B 98:26–35. doi:10.1016/j.colsurfb.2012.04.011

    Article  Google Scholar 

  • Gao F, Su Z-G, Wang P, Ma G-H (2009) Double emulsion templated microcapsules with single hollow cavities and thickness-controllable shells. Langmuir 25:3832–3838

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Geng H, Song H, Qi J, Cui D (2011) Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. Nanoscale Res Lett 6:1–8

    Article  Google Scholar 

  • Gilet T, Vandewalle N, Dorbolo S (2007) Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys Rev E 76:035302

    Article  Google Scholar 

  • Gilet T, Terwagne D, Vandewalle N, Dorbolo S (2008) Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys Rev Lett 100:167802

    Article  Google Scholar 

  • Gilet T, Terwagne D, Vandewalle N (2009) Digital microfluidics on a wire. Appl Phys Lett 95:014106

    Article  Google Scholar 

  • Giovagnoli S, Blasi P, Schoubben A, Rossi C, Ricci M (2007) Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. Int J Pharm 333:103–111. doi:10.1016/j.ijpharm.2006.10.005

    Article  Google Scholar 

  • Gomaa HG, Liu J, Sabouni R, Zhu J (2014) Experimental and theoretical analysis of emulsification characteristics using a high porosity microscreen under oscillatory shear conditions. Colloids Surf A 456:160–168. doi:10.1016/j.colsurfa.2014.05.020

    Article  Google Scholar 

  • Gonçalves VSS, Rodríguez-Rojo S, Matias AA et al (2014) Development of multicore hybrid particles for drug delivery through the precipitation of CO2 saturated emulsions. Int J Pharm 478:9–18. doi:10.1016/j.ijpharm.2014.11.003

    Article  Google Scholar 

  • Gong A, Ma X, Xiang L, Ren W, Shen Z, Wu A (2014) Improved double emulsion technology for fabricating autofluorescent microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. Colloids Surf B Biointerfaces 116:561–567. doi:10.1016/j.colsurfb.2014.01.038

    Article  Google Scholar 

  • Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99:104502

    Article  Google Scholar 

  • Han YL, Wang W, Hu J et al (2013) Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper–polymer composite. Lab Chip 13:4745–4749

    Article  Google Scholar 

  • Harada T, Discher DE (2011) Materials science: bubble wrap of cell-like aggregates. Nature 471:172–173

    Article  Google Scholar 

  • Hennequin Y, Pannacci N, de Torres CP, Tetradis-Meris G, Chapuliot S, Bouchaud E, Tabeling P (2009) Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 25:7857–7861

    Article  Google Scholar 

  • Higashi S, Setoguchi T (2000) Hepatic arterial injection chemotherapy for hepatocellular carcinoma with epirubicin aqueous solution as numerous vesicles in iodinated poppy-seed oil microdroplets: clinical application of water-in-oil-in-water emulsion prepared using a membrane emulsification technique. Adv Drug Deliv Rev 45:57–64. doi:10.1016/s0169-409x(00)00100-9

    Article  Google Scholar 

  • Hosny KM, Banjar ZM, Hariri AH, Hassan AH (2015) Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia. Drug Des Dev Ther 9:313

    Article  Google Scholar 

  • Hsiung S-K, Chen C-T, Lee G-B (2006) Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques. J Micromech Microeng 16:2403–2410

    Article  Google Scholar 

  • Hwang S, Choi C-H, Lee C-S (2012) Regioselective surface modification of pdms microfluidic device for the generation of monodisperse double emulsions. Macromol Res 20:422–428

    Article  Google Scholar 

  • Jaganathan M, Madhumitha D, Dhathathreyan A (2014) Protein microcapsules: preparation and applications. Adv Colloid Interface Sci 209:1–7. doi:10.1016/j.cis.2013.12.004

    Article  Google Scholar 

  • Jaimes-Lizcano YA, Wang Q, Rojas EC, Papadopoulos KD (2013) Evaporative destabilization of double emulsions for effective triggering of release. Colloids Surf A 423:81–88. doi:10.1016/j.colsurfa.2013.01.054

    Article  Google Scholar 

  • Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mater Sci 42:266–297

    Article  Google Scholar 

  • Jaworek A (2008) Electrostatic micro-and nanoencapsulation and electroemulsification: a brief review. J Microencapsul 25:443–468

    Article  Google Scholar 

  • Jayasinghe SN, Irvine S, McEwan JR (2007) Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds. Nanomedicine 2:545–553

    Article  Google Scholar 

  • Kaimainen M, Marze S, Järvenpää E, Anton M, Huopalahti R (2015) Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT Food Sci Technol 60:899–904. doi:10.1016/j.lwt.2014.10.016

    Article  Google Scholar 

  • Kazazi-Hyseni F, Landin M, Lathuile A et al. (2014) Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Pharm Res 31:2844–2856

    Article  Google Scholar 

  • Kim S-H, Kim B (2014) Controlled formation of double-emulsion drops in sudden expansion channels. J Colloid Interface Sci 415:26–31

    Article  Google Scholar 

  • Kim S-H, Kim JW, Cho J-C, Weitz DA (2011) Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 11:3162–3166

    Article  Google Scholar 

  • Koh W-G, Pishko M (2006) Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 385:1389–1397. doi:10.1007/s00216-006-0571-6

    Article  Google Scholar 

  • Lao K-L, Wang J-H, Lee G-B (2009) A microfluidic platform for formation of double-emulsion droplets. Microfluid Nanofluid 7:709–719. doi:10.1007/s10404-009-0430-9

    Article  Google Scholar 

  • Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater 20:3498–3503

    Article  Google Scholar 

  • Lee Y-H, Mei F, Bai M-Y, Zhao S, Chen D-R (2010) Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release 145:58–65. doi:10.1016/j.jconrel.2010.03.014

    Article  Google Scholar 

  • Lensen D (2008) Polymeric microcapsules for synthetic applications. Macromol Biosci 8:991

    Article  Google Scholar 

  • Li X-B, Li F-C, Yang J-C, Kinoshita H, Oishi M, Oshima M (2012) Study on the mechanism of droplet formation in T-junction microchannel. Chem Eng Sci 69:340–351. doi:10.1016/j.ces.2011.10.048

    Article  Google Scholar 

  • Li X-B, Li F-C, Kinoshita H, Oishi M, Oshima M (2015) Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel. Microfluid Nanofluid 18:1007–1021

    Article  Google Scholar 

  • Lin Y-H, Lee C-H, Lee G-B (2008) Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. J Microelectromech Syst 17:573–581

    Article  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  Google Scholar 

  • Liu R, Ma G-H, Wan Y-H, Su Z-G (2005a) Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Colloids Surf B 45:144–153. doi:10.1016/j.colsurfb.2005.08.004

    Article  Google Scholar 

  • Liu R, Ma G, Meng F-T, Su Z-G (2005b) Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J Control Release 103:31–43. doi:10.1016/j.jconrel.2004.11.025

    Article  Google Scholar 

  • Liu L, Yang J-P, Ju X-J et al (2011) Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter 7:4821–4827

    Article  Google Scholar 

  • Liu M, Gan L, Chen L, Zhu D, Xu Z, Hao Z, Chen L (2012) A novel liposome-encapsulated hemoglobin/silica nanoparticle as an oxygen carrier. Int J Pharm 427:354–357

    Article  Google Scholar 

  • Lorenceau É, Clanet C, Quéré D (2004) Capturing drops with a thin fiber. J Colloid Interface Sci 279:192–197. doi:10.1016/j.jcis.2004.06.054

    Article  Google Scholar 

  • Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo AM (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698. doi:10.1126/science.1067595

    Article  Google Scholar 

  • Marín ÁG, Loscertales IG, Márquez M, Barrero A (2007) Simple and double emulsions via coaxial jet electrosprays. Phys Rev Lett 98:014502

    Article  Google Scholar 

  • Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, Weitz DA (2012) Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew Chem 51:6416–6420. doi:10.1002/anie.201201443

    Article  Google Scholar 

  • Maruyama T, Fukui Y, Tsuchiya E, Fujii A (2012) One-step preparation of giant lipid vesicles with high encapsulation efficiency using an electrospray technique. RSC Adv 2:11672–11674

    Article  Google Scholar 

  • Mason N, Thies C, Cicero TJ (1976) In vivo and in vitro evaluation of a microencapsulated narcotic antagonist. J Pharm Sci 65:847–850. doi:10.1002/jps.2600650612

    Article  Google Scholar 

  • Moghaddam MK, Mortazavi SM, Khayamian T (2015) Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J Electrostat 73:56–64. doi:10.1016/j.elstat.2014.10.013

    Article  Google Scholar 

  • Nicodemus G, Bryant S (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165. doi:10.1089/ten.teb.2007.0332

    Article  Google Scholar 

  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293

    Article  Google Scholar 

  • Nossal GJV (1958) Antibody production by single cells. Br J Exp Pathol 39:544

    Google Scholar 

  • Odenwälder PK, Irvine S, McEwan JR, Jayasinghe SN (2007) Bio-electrosprays: a novel electrified jetting methodology for the safe handling and deployment of primary living organisms. Biotechnol J 2:622–630. doi:10.1002/biot.200700031

    Article  Google Scholar 

  • Oh H-J, Kim S-H, Baek J-Y, Seong G-H, Lee S-H (2006) Hydrodynamic micro-encapsulation of aqueous fluids and cells via’on the fly’photopolymerization. J Micromech Microeng 16:285–291

    Article  Google Scholar 

  • Okochi Hideaki NM (1997) Comparative study of two preparation methods of w/o/w emulsions: stirring and membrane emulsification. Chem Pharm Bull 45:1323–1326

    Article  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908. doi:10.1021/la0480336

    Article  Google Scholar 

  • Palamoor M, Jablonski MM (2014) Comparative study on diffusion and evaporation emulsion methods used to load hydrophilic drugs in poly(ortho ester) nanoparticle emulsions. Powder Technol 253:53–62. doi:10.1016/j.powtec.2013.11.014

    Article  Google Scholar 

  • Pan J, Stephenson AL, Kazamia E, Huck WTS, Dennis JS, Smith AG, Abell C (2011) Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Integr Biol 3:1043–1051

    Article  Google Scholar 

  • Pannacci N, Bruus H, Bartolo D et al (2008) Equilibrium and nonequilibrium states in microfluidic double emulsions. Phys Rev Lett 101:164502

    Article  Google Scholar 

  • Parhizkar M, Stride E, Edirisinghe M (2014) Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Lab Chip 14:2437–2446. doi:10.1039/C4lc00328d

    Article  Google Scholar 

  • Park KM, Sung H, Choi SJ, Choi YJ, Chang P-S (2014) Double-layered microparticles with enzyme-triggered release for the targeted delivery of water-soluble bioactive compounds to small intestine. Food Chem 161:53–59. doi:10.1016/j.foodchem.2014.03.125

    Article  Google Scholar 

  • Patel P, Irvine S, McEwan JR, Jayasinghe SN (2008) Bio-protocols for directly forming active encapsulations containing living primary cells. Soft Matter 4:1219–1229

    Article  Google Scholar 

  • Patel B, Gupta V, Ahsan F (2012) PEG–PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release 162:310–320. doi:10.1016/j.jconrel.2012.07.003

    Article  Google Scholar 

  • Pautot S, Frisken BJ, Weitz DA (2003) Production of unilamellar vesicles using an inverted emulsion. Langmuir 19:2870–2879. doi:10.1021/La026100v

    Article  Google Scholar 

  • Pawlik AK, Norton IT (2012) Encapsulation stability of duplex emulsions prepared with SPG cross-flow membrane, SPG rotating membrane and rotor-stator techniques—a comparison. J Membr Sci 415–416:459–468. doi:10.1016/j.memsci.2012.05.032

    Article  Google Scholar 

  • Perez-Moral N, Watt S, Wilde P (2014) Comparative study of the stability of multiple emulsions containing a gelled or aqueous internal phase. Food Hydrocolloids 42:215–222. doi:10.1016/j.foodhyd.2014.05.023

    Article  Google Scholar 

  • Pimentel-González DJ, Campos-Montiel RG, Lobato-Calleros C, Pedroza-Islas R, Vernon-Carter EJ (2009) Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Res Int 42:292–297. doi:10.1016/j.foodres.2008.12.002

    Article  Google Scholar 

  • Pott T, Bouvrais H, Meleard P (2008) Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lipids 154:115–119. doi:10.1016/j.chemphyslip.2008.03.008

    Article  Google Scholar 

  • Prajapati J, Patel H, Agrawal YK (2012) Targeted drug delivery for central nervous system: a review. Int J Pharm Pharm Sci 3:32–38

    Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422. doi:10.1038/nrm2698

    Article  Google Scholar 

  • Rabanel J-M, Hildgen P (2004) Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation. J Microencapsul 21:413–431. doi:10.1080/02652040410001729223

    Article  Google Scholar 

  • Rakszewska A, Tel J, Chokkalingam V, Huck WTS (2014) One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis. NPG Asia Mater 6:e133

    Article  Google Scholar 

  • Rife JC, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuators A 86:135–140. doi:10.1016/S0924-4247(00)00433-7

    Article  Google Scholar 

  • Rodríguez-García R, Mell M, López-Montero I, Netzel J, Hellweg T, Monroy F (2011) Polymersomes: smart vesicles of tunable rigidity and permeability. Soft Matter 7:1532. doi:10.1039/c0sm00823k

    Article  Google Scholar 

  • Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:271–280. doi:10.1016/j.jconrel.2004.07.007

    Article  Google Scholar 

  • Rotem A, Abate AR, Utada AS, Van Steijn V, Weitz DA (2012) Drop formation in non-planar microfluidic devices. Lab Chip 12:4263–4268

    Article  Google Scholar 

  • Schroën K, Bliznyuk O, Muijlwijk K, Sahin S, Berton-Carabin CC (2015) Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production. Curr Opin Food Sci 3:33–40

    Article  Google Scholar 

  • Seiffert S, Thiele J, Abate AR, Weitz DA (2010) Smart microgel capsules from macromolecular precursors. J Am Chem Soc 132:6606–6609. doi:10.1021/ja102156h

    Article  Google Scholar 

  • Seo M, Paquet C, Nie Z, Xu S, Kumacheva E (2007) Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3:986–992

    Article  Google Scholar 

  • Shah RK, Shum HC, Rowat AC et al (2008) Designer emulsions using microfluidics. Mater Today 11:18–27. doi:10.1016/S1369-7021(08)70053-1

    Article  Google Scholar 

  • Shao T, Feng X, Jin Y, Cheng Y (2013) Controlled production of double emulsions in dual-coaxial capillaries device for millimeter-scale hollow polymer spheres. Chem Eng Sci 104:55–63

    Article  Google Scholar 

  • Shum HC, Kim J-W, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549

    Article  Google Scholar 

  • Sim SPC, Kang TG, Yobas L, Holtze C, Weitz DA (2010) The shape of a step structure as a design aspect to control droplet generation in microfluidics. J Micromech Microeng 20:035010

    Article  Google Scholar 

  • Staff RH, Landfester K, Crespy D (2013) Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules. In: Percec V (ed) Hierarchical macromolecular structures: 60 years after the staudinger Nobel Prize II. Springer, pp 329–344

  • Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653. doi:10.1039/b913997d

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Yamamoto K, Iwamoto S, Oda T, Satake M, Seki M (2004) Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification. J Colloid Interface Sci 270:221–228

    Article  Google Scholar 

  • Sun BJ, Shum HC, Holtze C, Weitz DA (2010) Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl Mater Interfaces 2:3411–3416

    Article  Google Scholar 

  • Sun Y, Zheng Y, Ran H et al (2012) Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials 33:5854–5864

    Article  Google Scholar 

  • Suvorov VG, Litvinov EA (2000) Dynamic Taylor cone formation on liquid metal surface: numerical modelling. J Phys D Appl Phys 33:1245

    Article  Google Scholar 

  • Takeuchi S, Garstecki P, Weibel DB, Whitesides GM (2005) An axisymmetric flow-focusing microfluidic device. Adv Mater 17:1067–1072

    Article  Google Scholar 

  • Tal-Figiel B (2007) The formation of stable w/o, o/w, w/o/w cosmetic emulsions in an ultrasonic field. Chem Eng Res Des 85:730–734

    Article  Google Scholar 

  • Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. doi:10.1039/b715524g

    Article  Google Scholar 

  • Terwagne D, Gilet T, Vandewalle N, Dorbolo S (2010) From a bouncing compound drop to a double emulsion. Langmuir 26:11680–11685. doi:10.1021/la101096q

    Article  Google Scholar 

  • Thompson KL, Mable CJ, Lane JA, Derry MJ, Fielding LA, Armes SP (2015) Preparation of pickering double emulsions using block copolymer worms. Langmuir 31:4137–4144. doi:10.1021/acs.langmuir.5b00741

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. doi:10.1126/science.1109164

    Article  Google Scholar 

  • Utada AS, Fernandez-Nieves A, Gordillo JM, Weitz DA (2008) Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett 100:014502

    Article  Google Scholar 

  • Vandergraaf S, Schroen C, Boom R (2005) Preparation of double emulsions by membrane emulsification? A review. J Membr Sci 251:7–15. doi:10.1016/j.memsci.2004.12.013

    Article  Google Scholar 

  • Vladisavljević GT, Williams RA (2005) Recent developments in manufacturing emulsions and particulate products using membranes. Adv Colloid Interface Sci 113:1–20

    Article  Google Scholar 

  • Vladisavljević GT, Shimizu M, Nakashima T (2004) Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification. Journal of Membrane Science 244:97–106. doi:10.1016/j.memsci.2004.07.008

    Article  Google Scholar 

  • Wagdare NA, Marcelis A, Ho OB, Boom RM, van Rijn CJM (2010) High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. J Membr Sci 347:1–7

    Article  Google Scholar 

  • Wang C, Ge Q, Ting D et al (2004) Molecularly engineered poly (ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3:190–196

    Article  Google Scholar 

  • Wang W, Zhang MJ, Chu LY (2014) Microfluidic approach for encapsulation via double emulsions. Curr Opin Pharmacol 18C:35–41. doi:10.1016/j.coph.2014.08.003

    Article  Google Scholar 

  • Wei Q, Wei W, Tian R, Wang L-y SuZ-G, Ma G-H (2008) Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J Colloid Interface Sci 323:267–273

    Article  Google Scholar 

  • Wei Y, Wang Y, Wang L, Hao D, Ma G (2011) Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification. Colloids Surf B 87:399–408

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wu B, Gong H-Q (2012) Formation of fully closed microcapsules as microsensors by microfluidic double emulsion. Microfluid Nanofluid 14:637–644. doi:10.1007/s10404-012-1083-7

    Article  Google Scholar 

  • Wu J, Kong T, Yeung KWK, Shum HC, Cheung KMC, Wang L, To MKT (2013) Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta Biomater 9:7410–7419. doi:10.1016/j.actbio.2013.03.022

    Article  Google Scholar 

  • Wu J, Fan Q, Xia Y, Ma G (2015) Uniform-sized particles in biomedical field prepared by membrane emulsification technique. Chem Eng Sci 125:85–97

    Article  Google Scholar 

  • Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y (2009) Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 30:1947–1953. doi:10.1016/j.biomaterials.2008.12.044

    Article  Google Scholar 

  • Young E, Alper H (2010) Synthetic biology: tools to design, build, and optimize cellular processes. J Biomed Biotechnol 2010:130781. doi:10.1155/2010/130781

    Article  Google Scholar 

  • Yow HN, Routh AF (2006) Formation of liquid core-polymer shell microcapsules. Soft Matter 2:940–949

    Article  Google Scholar 

  • Yuan QC, Williams RA (2014) Precision emulsification for droplet and capsule production. Adv Powder Technol 25:122–135. doi:10.1016/j.apt.2013.10.006

    Article  Google Scholar 

  • Zamani M, Prabhakaran MP, San Thian E, Ramakrishna S (2014) Protein encapsulated core–shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables. Int J Pharm 473:134–143

    Article  Google Scholar 

  • Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C (2012) One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335:690–694

    Article  Google Scholar 

  • Zhang Y, Ho YP, Chiu YL et al (2013) A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 34:4564–4572. doi:10.1016/j.biomaterials.2013.03.002

    Article  Google Scholar 

  • Zhao C-X, Middelberg APJ (2011) Two-phase microfluidic flows. Chem Eng Sci 66:1394–1411. doi:10.1016/j.ces.2010.08.038

    Article  Google Scholar 

  • Zhao X, Wu J, Gong F-L, Cui J-M, Janson J-C, Ma G-H, Su Z-G (2014) Preparation of uniform and large sized agarose microspheres by an improved membrane emulsification technique. Powder Technol 253:444–452. doi:10.1016/j.powtec.2013.12.012

    Article  Google Scholar 

  • Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F (2014) One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86:2526–2533. doi:10.1021/ac403585p

    Article  Google Scholar 

  • Zou G-K, Song Y-L, Zhou W et al (2012) Effects of local delivery of bFGF from PLGA microspheres on osseointegration around implants in diabetic rats. Oral Surg Oral Med Oral Pathol Oral Radiol 114:284–289

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (11372243, 51476128), the International Science and Technology Cooperation Program of China (2013DFG02930) and the National Key Scientific Apparatus Development of Special Item (2013YQ190467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, D., Liu, X., Ma, H. et al. Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 19, 1071–1090 (2015). https://doi.org/10.1007/s10404-015-1635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1635-8

Keywords

Navigation