Skip to main content
Log in

Pilot plants of membrane technology in industry: Challenges and key learnings

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Membrane technology holds great potential in gas separation applications, especially carbon dioxide capture from industrial processes. To achieve this potential, the outputs from global research endeavours into membrane technologies must be trialled in industrial processes, which requires membrane-based pilot plants. These pilot plants are critical to the commercialization of membrane technology, be it as gas separation membranes or membrane gas-solvent contactors, as failure at the pilot plant level may delay the development of the technology for decades. Here, the author reports on his experience of operating membrane-based pilot plants for gas separation and contactor configurations as part of three industrial carbon capture initiatives: the Mulgrave project, H3 project and Vales Point project. Specifically, the challenges of developing and operating membrane pilot plants are presented, as well as the key learnings on how to successfully manage membrane pilot plants to achieve desired performance outcomes. The purpose is to assist membrane technologists in the carbon capture field to achieve successful outcomes for their technology innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker R W. Advanced Membrane Technology and Applications. Li N N, Fane A G, Ho W S W, Boylewoo T M, eds. New Jersy: John Wiley & Sons, 2008, 559–580

  2. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress & Sustainable Energy, 2004, 22(1): 46–56

    Google Scholar 

  3. Matsuura T. Progress in membrane science and technology for seawater desalination—a review. Desalination, 2001, 134(1–3): 47–54

    Article  CAS  Google Scholar 

  4. Hilal N, Al-Zoubi H, Darwish N A, Mohammad A W, Abu Arabi M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308

    Article  CAS  Google Scholar 

  5. Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254

    Article  CAS  Google Scholar 

  6. Porcelli N, Judd S. Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, 2010, 71(2): 137–143

    Article  CAS  Google Scholar 

  7. Padaki M, Surya Murali R, Abdullah M S, Misdan N, Moslehyani A, Kassim M A, Hilal N, Ismail A F. Membrane technology enhancement in oil-water separation. A review. Desalination, 2015, 357:197–207

    Article  CAS  Google Scholar 

  8. Sridhar S, Smitha B, Aminabhavi T M. Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Separation and Purification Reviews, 2007, 36(2): 113–174

    Article  CAS  Google Scholar 

  9. Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121

    Article  CAS  Google Scholar 

  10. Scholes C A, Stevens G W, Kentish S E. Membrane gas separation applications in natural gas processing. Fuel, 2012, 96(1): 15–28

    Article  CAS  Google Scholar 

  11. Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663

    Article  CAS  Google Scholar 

  12. Klaassen R, Jansen A E. The membrane contactor: Environmental applications and possibilities. Environmental Progress, 2001, 20(1): 37–43

    Article  CAS  Google Scholar 

  13. Scholes C A, Smith K H, Kentish S E, Stevens G W. CO2 capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755

    Article  CAS  Google Scholar 

  14. Scholes C A, Ho M T, Wiley D E, Stevens G W, Kentish S E. Cost competitive membrane—cryogenic post-combustion carbon capture. International Journal of Greenhouse Gas Control, 2013, 17: 341–348

    Article  CAS  Google Scholar 

  15. Merkel T C, Lin X, Wei X, Baker R W. Power plant postcombustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1–2): 126–139

    Article  CAS  Google Scholar 

  16. Klaassen R, Feron P H M, Jansen A E. Membrane contactors in industrial applications. Chemical Engineering Research & Design, 2005, 83(3): 234–246

    Article  CAS  Google Scholar 

  17. Falk-Pedersen O, Gronvold M S, Nokleby P, Bjerve Y, Svendsen H F. CO2 capture with membrane contactors. International Journal of Green Energy, 2005, 2(2): 157–165

    Article  CAS  Google Scholar 

  18. Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49

    Article  CAS  Google Scholar 

  19. Rezakazemi M, Amooghin A E, Montazer-Rahmati M M, Ismail A F, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 2014, 39(5): 817–861

    Article  CAS  Google Scholar 

  20. Hägg M B, Lindbrathen A, He X, Nodeland S G, Cantero T. Pilot demonstration reporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia, 2017, 114: 6150–6165

    Article  Google Scholar 

  21. Sandru M, Kim T J, Capala W, Huijbers M, Hagg M B. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480

    Article  CAS  Google Scholar 

  22. Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64

    Article  CAS  Google Scholar 

  23. Qader A. Carbon capture and storage demonstration by CO2CRC. In: Carbon Management. Houston, TX: AIChE Academy, 2017, 3.15–3.45

    Google Scholar 

  24. White L S, Wei X, Pande S, Wu T, Merkel T C. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. Journal of Membrane Science, 2015, 496(1): 48–57

    Article  CAS  Google Scholar 

  25. Falk-Pedersen O, Bjerve Y, Glittum G, Ronning S. Separation of carbon dioxide from offshore gas turbine exhaust. Energy Conversion and Management, 1995, 36(6–9): 393–396

    Article  CAS  Google Scholar 

  26. Falk-Pedersen O, Dannstrom H. Separation of carbon dioxide from offshore gas turbine exhaust. Energy Conversion and Management, 1997, 38: S81–S86

    Article  CAS  Google Scholar 

  27. Comite A, Costa C, Demartini M, Di Felice R, Oliva M. Exploring CO2 capture from pressurized industrial gaseous effluents in membrane contactor-based pilot plant. International Journal of Greenhouse Gas Control, 2017, 67: 60–70

    Article  CAS  Google Scholar 

  28. Li S, Rocha D J, Zhou S J, Meyer H S, Bikson B, Ding Y. Postcombustion CO2 capture using super-hydrophobic, polyether ether ketone, hollow fiber membrane contactors. Journal of Membrane Science, 2013, 430: 79–86

    Article  CAS  Google Scholar 

  29. Scholes C A, Bacus J, Chen G Q, Tao W X, Li G, Qader A, Stevens G W, Kentish S E. Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. Journal of Membrane Science, 2012, 389: 470–477

    Article  CAS  Google Scholar 

  30. Scholes C A, Simioni M, Qader A, Stevens G W, Kentish S E. Membrane gas-solvent contactor trials of CO2 absorption from syngas. Chemical Engineering Journal, 2012, 195–196: 188–197

    Article  Google Scholar 

  31. Scholes C A, Qader A, Stevens G W, Kentish S E. Membrane gassolvent contactor trials of CO2 absorption from flue gas. Separation Science and Technology, 2014, 49(16): 2449–2458

    Article  CAS  Google Scholar 

  32. Scholes C A, Qader A, Stevens G W, Kentish S E. Membrane pilot plant trials of CO2 separation from flue gas. Greenhouse Gases. Science and Technology, 2015, 5(3): 1–10

    Google Scholar 

  33. Qader A, Hooper B, Stevens G. Demonstrating carbon capture. Chemical Engineering (Albany, N.Y.), 2009, 11: 30–31 (TCE)

    Google Scholar 

  34. Scholes C A, Kentish S E, Stevens G W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44

    Article  CAS  Google Scholar 

  35. Scholes C A, Motuzas J, Smart S, Kentish S E. Membrane adhesives. Industrial & Engineering Chemistry Research, 2014, 53(23): 9523–9533

    Article  CAS  Google Scholar 

  36. deMontigny D, Tontiwachwuthikul P, Chakma A. Comparing the absorption performance of packed columns and membrane contactors. Industrial & Engineering Chemistry Research, 2005, 44(15): 5726–5732

    Article  CAS  Google Scholar 

  37. Alharthi K, Christianto Y, Aguiar A, Stickland A D, Stevens G W, Kentish S E. Impact of fly ash on the membrane performance in postcombustion carbon capture applications. Industrial & Engineering Chemistry Research, 2016, 55(16): 4711–4719

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the CO2CRC Ltd., especially Dr. Abdul Qader and Mr. Barry Hooper; Process Group (now Suez Oil & Gas Systems), especially Dr. Trina Dreher; Pilot Plant Management & Services Pty Ltd., especially Mr. Kurt Luttin; Commonwealth Scientific and Industrial Research Organisation (CSIRO), especially Mr. Dan Maher and Mr. Phillip Green; Furnace Engineering; HRL Technology Pty Ltd.; Engie (formerly GDF Suez); Delta Electricity; the Victorian Government’s Energy Technology Innovation Strategy (ETIS) and Victoria Fellowship; as well as Coal Innovation New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Scholes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholes, C.A. Pilot plants of membrane technology in industry: Challenges and key learnings. Front. Chem. Sci. Eng. 14, 305–316 (2020). https://doi.org/10.1007/s11705-019-1860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1860-x

Keywords

Navigation