Skip to main content
Log in

Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace amounts of diclofenac via a labeled aptasensor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A p-type transition metal dichalcogenide (WS2) was synthesized and hybridized with graphene oxide via a simple hydrothermal method. The as-prepared material was used to modify a glassy carbon electrode for the fabrication of a simple, stable, and repeatable methylene blue-labeled “signal-off” aptasensor used for the sensitive determination of very low amounts of sodium diclofenac (DCF). The synthetic material, modification process, and role of WS2 in the current response enhancement were studied by X-ray diffraction, energydispersive X-ray spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, Hall effect, cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Subsequently, a wide linear range of DCF concentration (0.5–300 nmol/L), very low limit of detection (0.23 nmol/L), and good selectivity were obtained using the differential pulse voltammetry method with the assembled aptasensor. Finally, the fabricated aptasensor was successfully developed for physiological real samples with significant recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagheri A M, Mahvi A H, Nabizadeh R A, Dehghani M H, Mahmoudi B, Akbari-Adergani M, Yaghmaeian K. Rapid destruction of the non-steroidal anti-inflammatory drug diclofenac using advanced nano-Fenton process in aqueous solution. Acta Medica Mediterranea, 2017, 33(1): 879–883

    Google Scholar 

  2. Finley P R. Drug interactions with lithium: An update. Clinical Pharmacokinetics, 2016, 55(8): 925–941

    Article  CAS  Google Scholar 

  3. Patrono C. Cardiovascular effects of nonsteroidal anti-inflammatory drugs. Current Cardiology Reports, 2016, 18(3): 25

    Article  Google Scholar 

  4. Mavragani A, Sampri A, Tsagarakis K P. Quantifying the online behavior towards organic micropollutants of the EU watchlist: The cases of diclofenac & the macrolide antibiotics. Procedia Engineering, 2016, 162: 576–584

    Article  Google Scholar 

  5. Arcelloni C, Lanzi R, Pedercini S, Molteni G, Fermo I, Pontiroli A, Paroni R. High-performance liquid chromatographic determination of diclofenac in human plasma after solid-phase extraction. Journal of Chromatography. B, Biomedical Sciences and Applications, 2001, 763(1–2): 195–200

    Article  CAS  Google Scholar 

  6. Vlascici D, Pruneanu S, Olenic L, Pogacean F, Ostafe V, Chiriac V, Pica E M, Bolundut L C, Nica L, Fagadar-Cosma E. Manganese (III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations. Sensors (Basel), 2010, 10(10): 8850–8864

    Article  CAS  Google Scholar 

  7. Agüera A P, Pérez Estrada L A, Ferrer I, Thurman E M, Malato S, Fernández-Alba A R. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of Mass Spectrometry, 2005, 40(7): 908–915

    Article  Google Scholar 

  8. Rapini R, Marrazza G. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry (Amsterdam, Netherlands), 2017, 118: 47–61

    Article  CAS  Google Scholar 

  9. Tan S Y, Acquah C, Sidhu A, Ongkudon C M, Yon L S, Danquah M K. SELEX modifications and bioanalytical techniques for aptamertarget binding characterization. Critical Reviews in Analytical Chemistry, 2016, 46(6): 521–537

    Article  CAS  Google Scholar 

  10. Torres-Chavolla E, Alocilja E C. Aptasensors for detection of microbial and viral pathogens. Biosensors & Bioelectronics, 2009, 24(11): 3175–3182

    Article  CAS  Google Scholar 

  11. Bruno J G, Richarte A M. Development and characterization of an enzyme-linked DNA aptamer-magnetic bead-based assay for human IGF-I in serum. Microchemical Journal, 2016, 124: 90–95

    Article  CAS  Google Scholar 

  12. Citartan M, Ch’ng E S, Rozhdestvensky T S, Tang T H. Aptamers as the ‘capturing’ agents in aptamer-based capture assays. Microchemical Journal, 2016, 128: 187–197

    Article  CAS  Google Scholar 

  13. Xu Y, Cheng G, He P, Fang Y. A review: Electrochemical aptasensors with various detection strategies. Electroanalysis, 2009, 21(11): 1251–1259

    Article  CAS  Google Scholar 

  14. Le Floch F, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727–4731

    Article  CAS  Google Scholar 

  15. Shen L, Chen Z, Li Y, Jing P, Xie S, He S, He P, Shao Y. A chronocoulometric aptamer sensor for adenosine monophosphate. Chemical Communications, 2007, 21: 2169–2171

    Article  Google Scholar 

  16. Bao T, Wen W, Zhang X, Wang S. An exonuclease-assisted amplification electrochemical aptasensor of thrombin coupling “signal on/off” strategy. Analytica Chimica Acta, 2015, 860: 70–76

    Article  CAS  Google Scholar 

  17. Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2): 1102–1120

    Article  CAS  Google Scholar 

  18. Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10(4): 216

    Article  CAS  Google Scholar 

  19. Brent J R, Savjani N, O’Brien P. Synthetic approaches to twodimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89: 411–478

    Article  CAS  Google Scholar 

  20. Duan X, Xu J, Wei Z, Ma J, Guo S, Liu H, Dou S. Atomically thin transition—metal dichalcogenides for electrocatalysis and energy Storage. Small Methods, 2017, 1(11): 1700156

    Article  Google Scholar 

  21. Shahriary L, Athawale A A. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2014, 2(01): 58–63

    Google Scholar 

  22. Wang Z, Nayak P K, Caraveo-Frescas J A, Alshareef H N. Recent developments in p-type oxide semiconductor materials and devices. Advanced Materials, 2016, 28(20): 3831–3892

    Article  CAS  Google Scholar 

  23. Chang K, Chen W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chemical Communications, 2011, 47(14): 4252–4254

    Article  CAS  Google Scholar 

  24. Shiva K, Matte H R, Rajendra H B, Bhattacharyya A J, Rao C N. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy, 2013, 2(5): 787–793

    Article  CAS  Google Scholar 

  25. Bard A J, Faulkner L R. Electrochemical Methods. Fundamentals and Applications, 2001, 2: 534–579

    Google Scholar 

  26. Su L, Sankar C G, Sen D, Yu H Z. Kinetics of ion-exchange binding of redox metal cations to thiolate-DNA monolayers on gold. Analytical Chemistry, 2004, 76(19): 5953–5959

    Article  CAS  Google Scholar 

  27. Yu H Z, Luo C Y, Sankar C G, Sen D. Voltammetric procedure for examining DNA-modified surfaces: Quantitation, cationic binding activity, and electron-transfer kinetics. Analytical Chemistry, 2003, 75(15): 3902–3907

    Article  CAS  Google Scholar 

  28. Afkhami A, Bahiraei A, Madrakian T. Gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Materials Science and Engineering C, 2016, 59: 168–176

    Article  CAS  Google Scholar 

  29. Kashefi-Kheyrabadi L, Mehrgardi M A. Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosensors & Bioelectronics, 2012, 33(1): 184–189

    Article  CAS  Google Scholar 

  30. Shalauddin M, Akhter S, Bagheri S, KarimMS, Kadri N A, Basirun W J. Immobilized copper ions on MWCNTS-Chitosan thin film: enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. International Journal of Hydrogen Energy, 2017, 42(31): 19951–19960

    Article  CAS  Google Scholar 

  31. Mokhtari A, Karimi-Maleh H, Ensafi A A, Beitollahi H. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors and Actuators. B, Chemical, 2012, 169: 96–105

    Article  CAS  Google Scholar 

  32. Oliveira M C, Bindewald E H, Marcolino L H Jr, Bergamini M F. Potentiometric determination of diclofenac using an ion-selective electrode prepared from polypyrrole films. Journal of Electroanalytical Chemistry, 2014, 732: 11–16

    Article  CAS  Google Scholar 

  33. Sarhangzadeh K, Khatami A A, Jabbari M, Bahari S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. Journal of Applied Electrochemistry, 2013, 43(12): 1217–1224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Payame Noor University for supporting and providing research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdolhamid Hatefi-Mehrjardi or Amirkhosro Beheshti-Marnani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatefi-Mehrjardi, A., Beheshti-Marnani, A. & Es′haghi, Z. Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace amounts of diclofenac via a labeled aptasensor. Front. Chem. Sci. Eng. 13, 823–831 (2019). https://doi.org/10.1007/s11705-019-1797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1797-0

Keywords

Navigation