Skip to main content
Log in

Nanocomposite materials in orthopedic applications

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrique P, Camargo C, Satyanarayana K G, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 2009, 12(1): 1–39

    Article  Google Scholar 

  2. Mittal V. Bio–nanocomposites: Future high–value materials. In: Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future perspectives. Oxford, 2011, 1–27

    Google Scholar 

  3. Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212

    Article  CAS  Google Scholar 

  4. Lau A K T, Bhattacharyya D, Ling C H Y. Nanocomposites for engineering applications. Journal of Nanomaterials, 2009, 2009: 1

    Article  Google Scholar 

  5. Tjong S C. Polymer Composites With Carbonaceous Nanofillers: Properties and Applications. Hoboken: Wiley, 2012, 1–388

    Book  Google Scholar 

  6. Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology, 2005, 65(15–16): 2385–2406

    Article  CAS  Google Scholar 

  7. Johnell O. The socioeconomic burden of fractures: Today and in the 21st century. American Journal of Medicine, 1997, 103(2): 20S–26S

    Article  CAS  PubMed  Google Scholar 

  8. Jones L C, Topoleski L D T, Tsao A K. Biomaterials in orthopaedic implants. In: Mechanical Testing of Orthopaedic Implants. Amsterdam: Elsevier, 2017, 17–32

    Book  Google Scholar 

  9. Liu H, Webster T J. Bioinspired nanocomposites for orthopedic applications. Nanotechnology for the regeneration of hard and soft tissues. Singapore: World Scientific, 2007, 1–52

    Book  Google Scholar 

  10. Gu Y, Chen X, Lee J H, Monteiro D A, Wang H, Lee W Y. Inkjet printed antibiotic–and calcium–eluting bioresorbable nanocomposite micropatterns for orthopedic implants. Acta Biomaterialia, 2012, 8(1): 424–431

    Article  CAS  PubMed  Google Scholar 

  11. Chan C K, Kumar T S S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Future Nanomedicine, 2006, 1(2): 177–188

    Article  CAS  PubMed  Google Scholar 

  12. Okpala C C. Nanocomposites–an overview. International Journal of Engineering Research and Development, 2013, 8(11): 17–23

    Google Scholar 

  13. Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 14929–14941

    Article  CAS  Google Scholar 

  14. Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri M L, Agostiano A, Comparelli R. Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017, 281: 85–100

    Article  CAS  Google Scholar 

  15. Duan X, Deng J, Wang X, Liu P. Preparation of rGO/G/PANI ternary nanocomposites as high performance electrode materials for supercapacitors with spent battery powder as raw material. Materials & Design, 2017, 129: 135–142

    Article  CAS  Google Scholar 

  16. Tai WP, Kim Y S, Kim J G. Fabrication and magnetic properties of Al2O3/Co nanocomposites. Materials Chemistry and Physics, 2003, 82(2): 396–400

    Article  CAS  Google Scholar 

  17. Russo T, Gloria A, De Santis R, D’Amora U, Balato G, Vollaro A, Oliviero O, Improta G, Triassi M, Ambrosio L. Preliminary focus on the mechanical and antibacterial activity of a PMMA–based bone cement loaded with gold nanoparticles. Bioactive Materials, 2017, 2(3): 156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duc N D, Seung–Eock K, Quan T Q, Long D D, Anh V M. Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Composite Structures, 2018, 184: 1137–1144

    Article  Google Scholar 

  19. Khalid A, Abdel–Karim A, Ali Atieh M, Javed S, McKay G. PEGCNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Separation and Purification Technology, 2018, 190: 165–176

    Article  CAS  Google Scholar 

  20. Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212

    Article  CAS  Google Scholar 

  21. Seo WJ, Sung Y T, Kim S B, Lee Y B, Choe K H, Choe S H, Sung J Y, Kim W N. Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites. Journal of Applied Polymer Science, 2006, 102(4): 3764–3773

    Article  CAS  Google Scholar 

  22. Vallet–Regí M, González–Calbet J M. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 2004, 32(1–2): 1–31

    Article  CAS  Google Scholar 

  23. Ramay H R R, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load–bearing bone tissue engineering. Biomaterials, 2004, 25(21): 5171–5180

    Article  CAS  PubMed  Google Scholar 

  24. Swain S K, Gotman I, Unger R, Gutmanas E Y. Bioresorbable β–TCP–FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Materials Science and Engineering C, 2017, 78: 88–95

    Article  CAS  PubMed  Google Scholar 

  25. Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2012, 52(6): 1636–1653

    Article  CAS  PubMed  Google Scholar 

  26. Porwal H, Saggar R. Ceramic Matrix Nanocomposites. In: Comprehensive Composite Materials. Amsterdam: Elsevier, 2017, 138–161

    Google Scholar 

  27. Gupta P, Kumar D, Quraishi M A, Parkash O. Metal matrix nanocomposites and their application in corrosion control. Berlin: Springer, 2016, 231–246

    Book  Google Scholar 

  28. Kheimehsari H, Izman S, Shirdar M R. Effects of HA–coating on the surface morphology and corrosion behavior of a Co–Cr–based implant in different conditions. Journal of Materials Engineering and Performance, 2015, 24(6): 2294–2302

    Article  CAS  Google Scholar 

  29. Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Assadian M, Shirdar M R, Mirjalili A. Surfactant–assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceramics International, 2015, 41(8): 9867–9872

    Article  CAS  Google Scholar 

  30. Balani K, Chen Y, Harimkar S P, Dahotre N B, Agarwal A. Tribological behavior of plasma–sprayed carbon nanotube–reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007, 3(6): 944–951

    Article  CAS  PubMed  Google Scholar 

  31. Shirdar M R, Taheri M M. Surface morphology and corrosion behavior of hydroxyapatite–coated Co–Cr implant: Effect of sintering conditions. Journal of the Minerals Metals & Materials Society, 2017, 69(12): 2831–2837

    Article  CAS  Google Scholar 

  32. Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Shirdar M R, Naghizadeh F. Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: Synthesis and application. Materials & Design, 2015, 82: 119–125

    Article  CAS  Google Scholar 

  33. Dorozhkin S. Bioceramics of calcium orthophosphates. Biomaterials, 2010, 31(7): 1465–1485

    Article  CAS  PubMed  Google Scholar 

  34. Sivaperumal V R, Mani R, Nachiappan M S, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Materials Characterization, 2017, 134: 416–421

    Article  CAS  Google Scholar 

  35. Singh MK, Shokuhfar T, Gracio J J de A, de Sousa A C M, Fereira J M D F, Garmestani H, Ahzi S. Hydroxyapatite modified with carbon–nanotube–reinforced poly(methyl methacrylate): A nanocomposite material for biomedical applications. Advanced Functional Materials, 2008, 18(5): 694–700

    Article  CAS  Google Scholar 

  36. Farrokhi–Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Ceramics International, 2017, 44(1): 622–630

    Article  CAS  Google Scholar 

  37. Shirdar M R, Sudin I, Taheri M M, Keyvanfar A, Yusop M Z M. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co–Cr–based alloy. Vacuum, 2015, 122: 82–89

    Article  CAS  Google Scholar 

  38. Henderson H B, Rios O, Bryan Z L, Heitman C P K, Ludtka G M, Mackiewicz–Ludtka G, Melin A M, Manuel M V. Magnetoacoustic mixing technology: A novel method of processing metalmatrix nanocomposites. Advanced Engineering Materials, 2014, 16(9): 1078–1082

    Article  CAS  Google Scholar 

  39. Li X, Xu J. Metal matrix nanocomposites. In: Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018, 97–137

    Book  Google Scholar 

  40. Janas D, Liszka B. Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2018, 2(1): 22–35

    Article  CAS  Google Scholar 

  41. Hassanzadeh–Aghdam M K, Mahmoodi M J. A comprehensive analysis of mechanical characteristics of carbon nanotube–metal matrix nanocomposites. Materials Science and Engineering A, 2017, 701: 34–44

    Article  CAS  Google Scholar 

  42. Yahata C, Mochizuki A. Platelet compatibility of magnesium alloys. Materials Science and Engineering C, 2017, 78: 1119–1124

    Article  CAS  PubMed  Google Scholar 

  43. Witte F, Eliezer A. Biodegradable metals. In: Degradation of Implant Materials. Berlin: Springer, 2012, 93–110

    Google Scholar 

  44. Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701

    Article  CAS  Google Scholar 

  45. Khalajabadi S Z, Abu A B H, Ahmad N, Kadir M R A, Ismail A F, Nasiri R, Haider W, Redzuan N B H. Biodegradable Mg/HA/TiO2 nanocomposites coated with MgO and Si/MgO for orthopedic applications: A study on the corrosion, surface characterization, and biocompatability. Coatings, 2017, 7(7): 154

    Article  CAS  Google Scholar 

  46. Zhu C, Lv Y, Qian C, Qian H, Jiao T, Wang L, Zhang F. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Scientific Reports, 2016, 6(1): 38875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti–6V–4V/zinc surface nanocomposite prepared by friction stir processing. International Journal of Nanomedicine, 2018, 13: 1881–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Journett T J, Spicer J B. Synthesis and patterning of polymer matrix nanocomposites using femtosecond laser–assisted processing. Materials Research Society, 2012, 1455, mrss12–1455–ii02–03

    Google Scholar 

  49. Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering C, 2016, 60: 195–203

    Article  CAS  PubMed  Google Scholar 

  50. Dubey S P, Thakur V K, Krishnaswamy S, Abhyankar H A, Marchante V, Brighton J L. Progress in environmental–friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 2017, 146: 655–663

    Article  CAS  Google Scholar 

  51. Palmero P. Ceramic–polymer nanocomposites for bone–tissue regeneration. In: Nanocomposites for Musculoskeletal Tissue Regeneration. Amsterdam: Elsevier, 2016, 331–367

    Book  Google Scholar 

  52. Hule R A, Pochan D J. Polymer nanocomposites for biomedical applications. MRS Bulletin, 2007, 32(4): 354–358

    Article  CAS  Google Scholar 

  53. Mansur H S, Costa H S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 2008, 137(1): 72–83

    Article  CAS  Google Scholar 

  54. Mohanapriya S, Mumjitha M, Purnasai K, Raj V. Fabrication and characterization of poly(vinyl alcohol)–TiO2 nanocomposite films for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63: 141–156

    Article  CAS  PubMed  Google Scholar 

  55. Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research. Part A, 2006, 79A(3): 643–649

    Article  CAS  Google Scholar 

  56. Liao S S, Cui F Z, Zhang W, Feng Q L. Hierarchically biomimetic bone scaffold materials: Nano–HA/collagen/PLA composite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2004, 69B(2): 158–165

    CAS  Google Scholar 

  57. Chan K, Wong H, Yeung K, Tjong S. Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials (Basel), 2015, 8(3): 992–1008

    Article  CAS  Google Scholar 

  58. Wei G, Ma P X. Nanostructured biomaterials for regeneration. Advanced Functional Materials, 2008, 18(22): 3568–3582

    Article  CAS  Google Scholar 

  59. Webster T J, Ahn E S. Nanostructured biomaterials for tissue engineering bone. Advances in Biochemical Engineering/Biotechnology, 2007, 103: 275–308

    Article  CAS  PubMed  Google Scholar 

  60. Pina S, Oliveira J M, Reis R L. Natural–based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 2015, 27(7): 1143–1169

    Article  CAS  PubMed  Google Scholar 

  61. Kumar C S S R. Biomimetic and Bioinspired Nanomaterials. Hoboken: Wiley, 2010, 1–586

    Google Scholar 

  62. Canillas M, Pena P, de Aza A H, Rodríguez M A. Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017, 56(3): 91–112

    Article  Google Scholar 

  63. Park S, Lih E, Park K S, Joung Y K, Han D K. Bin, Lih E, Park K S, Joung Y K, Han D K. Biopolymer–based functional composites for medical applications. Progress in Polymer Science, 2017, 68: 77–105

    CAS  Google Scholar 

  64. Cunniffe G M, Dickson G R, Partap S, Stanton K T, O’Brien J F. Development and characterisation of a collagen nano–hydroxyapatite composite scaffold for bone tissue engineering. Journal of Materials Science. Materials in Medicine, 2010, 21(8): 2293–2298

    Article  CAS  PubMed  Google Scholar 

  65. Yan L P, Silva–Correia J, Correia C, Caridade S G, Fernandes E M, Sousa R A, Mano J F, Oliveira J M, Oliveira A L, Reis R L. Bioactive macro/micro porous silk fibroin/nano–sized calcium phosphate scaffolds with potential for bone–tissue–engineering applications. Nanomedicine (London), 2013, 8(3): 359–378

    Article  CAS  Google Scholar 

  66. Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. Journal of Materials Science. Materials in Medicine, 2012, 23(1): 51–61

    Article  CAS  PubMed  Google Scholar 

  67. Rogel M R, Qiu H, Ameer G A. The role of nanocomposites in bone regeneration. Journal of Materials Chemistry, 2008, 18(36): 4233

    Article  CAS  Google Scholar 

  68. Bhattacharyya S, Kumbar S G, Khan Y M, Nair L S, Singh A, Krogman N R, Brown P W, Allcock H R, Laurencin C T. Biodegradable polyphosphazene–nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 2009, 5(1): 69–75

    Article  CAS  PubMed  Google Scholar 

  69. Porter D. Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Materials Science and Engineering A, 2004, 365(1–2): 38–45

    Article  CAS  Google Scholar 

  70. Boyle WJ, Simonet WS, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337–342

    Article  CAS  Google Scholar 

  71. Dorozhkin S V. Calcium Orthophosphate–based Bioceramics and Biocomposites. Hoboken: Wiley, 2016, 1–405

    Book  Google Scholar 

  72. Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone, 1995, 16(5): 533–544

    Article  CAS  PubMed  Google Scholar 

  73. Rho J Y, Kuhn–Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998, 20(2): 92–102

    Article  CAS  Google Scholar 

  74. Kumar G, Narayan B. Morbidity at bone graft donor sites. In: Classic Papers in Orthopaedics. Berlin: Springer, 2014, 503–505

    Book  Google Scholar 

  75. García–Gareta E, Coathup M J, Blunn G W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81: 112–121

    Article  CAS  PubMed  Google Scholar 

  76. Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Hierarchically staggered nanostructure of mineralized collagen as a bone–grafting scaffold. Advanced Materials, 2016, 28(39): 8740–8748

    Article  CAS  PubMed  Google Scholar 

  77. Becker J, Lu L, Runge M B, Zeng H, Yaszemski M J, Dadsetan M. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite. Journal of Biomedical Materials Research. Part A, 2015, 103(8): 2549–2557

    Article  CAS  PubMed  Google Scholar 

  78. Hickey D J, Ercan B, Sun L, Webster T J. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomaterialia, 2015, 14: 175–184

    Article  CAS  PubMed  Google Scholar 

  79. Atak B H, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G. Preparation and characterization of amine functional nanohydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydrate Polymers, 2017, 164: 200–213

    Article  CAS  PubMed  Google Scholar 

  80. Liao S, Ngiam M, Chan C K, Ramakrishna S. Fabrication of nano hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomedical Materials (Bristol, England), 2009, 4 (2): 25019

    Book  Google Scholar 

  81. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone–like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711

    Article  CAS  PubMed  Google Scholar 

  82. Chan C K, Kumar T S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Nanomedicine (London), 2006, 1(2): 177–188

    Article  CAS  Google Scholar 

  83. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491

    Article  CAS  PubMed  Google Scholar 

  84. Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 2004, 4(8): 743–765

    Article  CAS  PubMed  Google Scholar 

  85. Chan B P, Hui T Y, Wong M Y, Yip K H K, Chan G C F. Mesenchymal stem cell–encapsulated collagen microspheres for bone tissue engineering. Tissue Engineering. Part C, Methods, 2010, 16(2): 225–235

    Article  CAS  PubMed  Google Scholar 

  86. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. European Journal of Trauma, 2006, 32(2): 114–124

    Article  Google Scholar 

  87. Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29–40

    CAS  Google Scholar 

  88. Hayashi T. Biodegradable polymers for biomedical uses. Progress in Polymer Science, 1994, 19(4): 663–702

    Article  CAS  Google Scholar 

  89. Winter G D. Heterotopic bone formation in a synthetic sponge. Proceedings of the Royal Society of Medicine, 1970, 63: 1111–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blokhuis T J, Termaat M F, den Boer F C, Patka P, Bakker F C, Haarman H J. Properties of calcium phosphate ceramics in relation to their in vivo behavior. Journal of Trauma, 2000, 48(1): 179–186

    Article  CAS  PubMed  Google Scholar 

  91. Chan O, Coathup M J, Nesbitt A, Ho C Y, Hing K A, Buckland T, Campion C, Blunn G W. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomaterialia, 2012, 8(7): 2788–2794

    Article  CAS  PubMed  Google Scholar 

  92. Wang J, Chen Y, Zhu X, Yuan T, Tan Y, Fan Y, Zhang X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. Journal of Biomedical Materials Research. Part A, 2014, 102(12): 4234–4243

    PubMed  Google Scholar 

  93. Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical–sized rat calvarial defects implanted with bioactive glass scaffolds. Journal of Biomedical Materials Research. Part A, 2012, 100(12): 3267–3275

    Article  CAS  PubMed  Google Scholar 

  94. Klopčič S B, Kovač J, Kosmač T. Apatite–forming ability of alumina and zirconia ceramics in a supersaturated Ca/P solution. Biomolecular Engineering, 2007, 24(5): 467–471

    Article  CAS  PubMed  Google Scholar 

  95. Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(2): 111–115

    PubMed  PubMed Central  Google Scholar 

  96. Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, Meyer–Lindenberg A. Influence of a magnesiumfluoride coating of magnesium–based implants (MgCa0.8) on degradation in a rabbit model. Journal of Biomedical Materials Research. Part A, 2010, 93(4): 1609–1619

    PubMed  Google Scholar 

  97. Kasuga T, Maeda H, Kato K, Nogami M, Hata K I, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 2003, 24(19): 3247–3253

    Article  CAS  PubMed  Google Scholar 

  98. Fricain J C, Schlaubitz S, Le Visage C, Arnault I, Derkaoui S M, Siadous R, Catros S, Lalande C, Bareille R, Renard M, et al. A nano–hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 2013, 34(12): 2947–2959

    Article  CAS  PubMed  Google Scholar 

  99. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone–like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711

    Article  CAS  PubMed  Google Scholar 

  100. Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J. Heavy metal toxicity and the environment. In: Molecular, Clinical and Environmental Toxicology. Berlin: Springer, 2012, 101: 133–164

    Article  Google Scholar 

  101. Ajayan P M, Schadler L S, Braun P V. Nanocomposite Science and Technology. Hoboken: Wiley, 2004, 1–239

    Google Scholar 

  102. Shirdar M R, Taheri M M, Moradifard H, Keyvanfar A, Shafaghat A, Shokuhfar T, Izman S. Hydroxyapatite–titania nanotube composite as a coating layer on Co–Cr–based implants: Mechanical and electrochemical optimization. Ceramics International, 2016, 42(6): 6942–6954

    Article  CAS  Google Scholar 

  103. Shirdar MR, Taheri MM, Sudin I, Shafaghat A, Keyvanfar A, Abd Majid M Z. In situ synthesis of hydroxyapatite–grafted titanium nanotube composite. Journal of Experimental Nanoscience, 2016, 11(10): 816–822

    Article  CAS  Google Scholar 

  104. Yang S, Leong K F, Du Z, Chua C K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 2001, 7(6): 679–689

    CAS  PubMed  Google Scholar 

  105. Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chemical Reviews, 2001, 101(7): 1869–1879

    Article  CAS  PubMed  Google Scholar 

  106. O’Brien F J. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3): 88–95

    Article  CAS  Google Scholar 

  107. Zhao C, Tan A, Pastorin G, Ho H K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31(5): 654–668

    Article  CAS  PubMed  Google Scholar 

  108. Gentile P, Ferreira A M, Callaghan J T, Miller C A, Atkinson J, Freeman C, Hatton P V. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Advanced Healthcare Materials, 2017, 6(8): 1601182

    Article  CAS  Google Scholar 

  109. Green D, Walsh D, Mann S, Oreffo R O. The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone, 2002, 30(6): 810–815

    Article  CAS  PubMed  Google Scholar 

  110. Stupp S I. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 1997, 277(5330): 1242–1248

    Article  CAS  PubMed  Google Scholar 

  111. Stupp S I. Supramolecular materials: Self–organized nanostructures. Science, 1997, 276(5311): 384–389

    Article  CAS  PubMed  Google Scholar 

  112. Beniash E, Hartgerink J D, Storrie H, Stendahl J C, Stupp S I. Selfassembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomaterialia, 2005, 1(4): 387–397

    Article  PubMed  Google Scholar 

  113. Hartgerink J D. Self–assembly and mineralization of peptideamphiphile nanofibers. Science, 2001, 294(5547): 1684–1688

    Article  CAS  Google Scholar 

  114. Kikuchi M, Ikoma T, Itoh S, Matsumoto H N, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone–like nanocomposites using the self–organization mechanism of hydroxyapatite and collagen. Composites Science and Technology, 2004, 64(6): 819–825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T. Shokuhfar acknowledges the financial support from NSF-DMR 1710049. M. R. Shirdar and N. Farajpour are thankful to NSFDMR 1564950.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolou Shokuhfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirdar, M.R., Farajpour, N., Shahbazian-Yassar, R. et al. Nanocomposite materials in orthopedic applications. Front. Chem. Sci. Eng. 13, 1–13 (2019). https://doi.org/10.1007/s11705-018-1764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1764-1

Keywords

Navigation