Skip to main content
Log in

Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

The thermal degradation behaviors of polycarbonate/polymethylphenylsilsesquioxane (FRPC) composites were investigated by thermogravimetric analysis (TGA) under isothermal conditions in nitrogen atmosphere. The isothermal kinetics equation was used to describe the thermal degradation process. The results showed that activation energy (E), in the case of isothermal degradation, was a quick increasing function of conversion (α) for polycarbonate (PC) but was a strong and decreasing function of conversion for FRPC. Under the isothermal condition, the addition of polymethylphenylsilsesquioxane (PMPSQ) retardanted the thermal degradation and enhanced the thermal stability of PC during the early and middle stages of thermal degradation. It also indicated a possible existence of a difference in nucleation, nuclei growth, and gas diffusion mechanism in the thermal degradation process between PC and FRPC. Meanwhile, the addition of PMPSQ influenced the lifetime of PC, but the composite still met the demand in manufacturing and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishihara H, Suda Y, Sakuma T. Halogen- and phosphorus-free flame retardant PC plastic with excellent moldability and recyclability. J Fire Sci, 2003, 21: 451–464

    Article  CAS  Google Scholar 

  2. Liu S M, Ye H, Zhou Y S, He J H, Jiang Z J, Zhao J Q, Huang X B. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FT-IR. Polym Degrad Stab, 2006, 91: 1808–1814

    Article  CAS  Google Scholar 

  3. Nodera A, Kanail T. Flame retardancy of a polycarbonate-polydimethylsiloxane block copolymer: the effect of the dimethylsiloxane block size. J Appl Polym Sci, 2006, 100: 565–575

    Article  CAS  Google Scholar 

  4. Iji M, Serizawa S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym Adv Technol, 1998, 9: 593–600

    Article  CAS  Google Scholar 

  5. Hayashida K, Ohtani H, Tsuge S, Nakanishi K. Flame retarding mechanism of polycarbonate containing trifunctional phenylsilicone additive studied by analytical pyrolysis techniques. Polym Bull, 2002, 48: 483–490

    Article  CAS  Google Scholar 

  6. Zhou W J, Yang H. Flame retarding mechanism of polycarbonate containing methylphenyl-silicone. Thermochi Acta, 2007, 452: 43–48

    Article  CAS  Google Scholar 

  7. Vyazovkin S, Wight C A. Kinetics in solids. Annu Rev Phys Chem, 1997, 48: 125–149

    Article  CAS  Google Scholar 

  8. GamLin C, Dutta N, Choudhury N R, Kehoe D, Matisons J. Influence of ethylene-propylene ratio on the thermal degradation behavior of EPDM elastomers. Thermochim Acta, 2001, 367: 185–193

    Article  Google Scholar 

  9. Vyazovkin S, Wight C A. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater, 1999, 11: 3386–3393

    Article  CAS  Google Scholar 

  10. Lua A C, Su J C. Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide. Polym Degrad Stab, 2006, 91: 144–153

    Article  CAS  Google Scholar 

  11. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet, 1996, 28: 95–101

    Article  CAS  Google Scholar 

  12. Saha B, Maiti A K, Ghoshal A K. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta, 2006, 444: 46–52

    Article  CAS  Google Scholar 

  13. Paik P, Kar K K. Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: effects of particle size. Polym Degrad Stab, 2008, 93: 24–35

    Article  CAS  Google Scholar 

  14. Denardin E L G, Janissek P R, Samios D. Time-temperature dependence of the thermo-oxidative aging of polychloroprene rubber: the time-temperature-transformation (TTT) superposition method and the lifetime prediction. Thermochim Acta, 2003, 395: 159–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Xin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Xin, Z. Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite. Front. Chem. Eng. China 3, 167–171 (2009). https://doi.org/10.1007/s11705-009-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0006-y

Keywords

Navigation