Skip to main content
Log in

A study on co-modification of MSNs with some transition metals and polyethyleneimine (PEI) as a versatile strategy for efficient delivery of short oligonucleotides

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this research, mesoporous silica nanoparticles (MSNs) were synthesized and hydrothermally modified with different transition metals, including Co2+, Fe2+, and Zn2+. The obtained samples (M-MSN) were further modified with polyethyleneimine (PEI) to give PEI-M-MSNs. These were studied for adsorption and desorption of siRNA molecules from phosphate-buffered saline (PBS). A direct relationship was observed between the adsorption capacity of each modified MSN sample and its zeta potential. As a result of high cationic nature of the PEI modifier and low ionic radius of Zn2+, PEI-Zn-MSN showed the highest siRNA adsorption capacity. Release of siRNA from the PEI-ZnMSN was just as good as its adsorption (37.6 vs. 42.5 µg/mg). Zeta potential of the samples seems to be a more important factor than their specific surface area. Pure MSN with the BET surface area of 1060 m2 g−1 showed the lowest siRNA adsorption capacity. PEI-Co-MSN, on the other hand, showed an unexpected low BET surface area of 208.9 m2 g−1. The very low adsorption capacity of the PEI-Co-MSN can be attributed to the destruction of the mesoporous framework, caused by the formation of Co3O4 nanoparticles, according to the XRD results. To obtain a sustained release profile, effect of the polyethyleneglycol (PEG) was studied. When a layer of PEG polymer was grafted on the surface, a sustained release profile was achieved and the PEGylated vehicle (PEG-PEI-Zn-MSN) showed tolerable cytotoxicity against normal human fibroblast cells according to the MTT test. The results of the present study may introduce the PEG-PEI-Zn-MSN as a versatile vehicle for efficient siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Akbarzadeh M, Oskuee RK, Gholami L, Mahmoudi A, Malaekeh-Nikouei B (2019) BR2 cell penetrating peptide improved the transfection efficiency of modified polyethyleneimine. J Drug Deliv Sci Technol 53:101154

    Article  CAS  Google Scholar 

  • Asefa T, Tao Z (2012) Mesoporous silica and organosilica materials—Review of their synthesis and organic functionalization. Can J Chem 90:1015–1031

    Article  CAS  Google Scholar 

  • Baeza A, Ruiz-Molina D, Vallet-Regí M (2017) Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv 14:783–796

    Article  CAS  PubMed  Google Scholar 

  • Baghbanbashi M, Pazuki G, Khoee S (2022) One pot silica nanoparticle modification and doxorubicin encapsulation as pH-responsive nanocarriers, applying PEG/lysine aqueous two phase system. J Mol Liq 349:118472

    Article  CAS  Google Scholar 

  • Becicka WM, Bielecki PA, Lorkowski ME, Moon TJ, Zhang Y, Atukorale PU, Covarrubias G, Karathanasis E (2021) The effect of PEGylation on the efficacy and uptake of an immunostimulatory nanoparticle in the tumor immune microenvironment. Nanoscale Adv 3:4961–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Guo Z, Tian H, Chen X (2016) Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 3:16023

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewi HA, Meng F, Sana B, Guo C, Norling B, Chen X, Lim S (2014) Investigation of electron transfer from isolated spinach thylakoids to indium tin oxide. RSC Adv 4(90):48815–48820

    Article  CAS  Google Scholar 

  • Fry JR, Garle MJ, Hammond AH (1988) Choice of acute toxicity measures for comparison of in vivo/in vitro toxicity. Altern Lab Anim 16:175–179

    Article  Google Scholar 

  • Fujiwara M, Yamamoto F, Okamoto K, Shiokawa K, Nomura R (2005) Adsorption of duplex DNA on mesoporous silicas: possibility of inclusion of DNA into their mesopores. Anal Chem 77:8138–8145

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Ganguli AK (2013) Anisotropic silica mesostructures for DNA encapsulation. Bull Mater Sci 36:329–332

    Article  CAS  Google Scholar 

  • Gomes H, Selvam P, Dapurkar S, Figueiredo J, Faria J (2005) Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous Mesoporous Mater 86:287–294

    Article  CAS  Google Scholar 

  • Hajiagha NG, Mahmoudi A, Sazegar MR, Pouramini MM (2019) Synthesis of cobalt-modified MSN as a model enzyme: evaluation of the peroxidatic performance. Microporous Mesoporous Mater 274:43–53

    Article  Google Scholar 

  • He X-x, Wang K, Tan W, Liu B, Lin X, He C, Li D, Huang S, Li J (2003) Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc 125:7168–7169

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhuang J, Wang C, Li J, Yang W (2012) Highly efficient adsorption of DNA on Fe3+–iminodiacetic acid modified silica particles. Colloids Surf A Physicochem Eng Asp 409:143–148

    Article  CAS  Google Scholar 

  • Junquera E, Aicart E (2016) Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 233:161–175

    Article  CAS  PubMed  Google Scholar 

  • Kanamala M, Palmer BD, Jamieson SMF, Wilson WR, Wu Z (2019) Dual pH-sensitive liposomes with low pH-triggered sheddable PEG for enhanced tumor-targeted drug delivery. Nanomed 14:1971–1989

    Article  CAS  Google Scholar 

  • Keasberry N, Yapp C, Idris A (2017) Mesoporous silica nanoparticles as a carrier platform for intracellular delivery of nucleic acids. Biochem Mosc 82:655–662

    Article  CAS  Google Scholar 

  • Kim M-H, Na H-K, Kim Y-K, Ryoo S-R, Cho HS, Lee KE, Jeon H, Ryoo R, Min D-H (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultra large pores and their application in gene delivery. ACS Nano 5:3568–3576

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hui K, Hui KS, Lee S, Cho Y, Lee H, Zhou W, Cho S, Chao CYH, Li Y (2011) Influence of modification method and transition metal type on the physicochemical properties of, MCM-41 catalysts and their performances in the catalytic ozonation of toluene. Appl Catal B 107:245–252

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Feng N (2019) Mesoporous silica nanoparticles: Synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 16:219–237

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Mahajan A, Andaraarachchi HP, Lee Y, Kortshagen UR (2021) Water-soluble luminescent silicon nanocrystals by plasma-induced acrylic acid grafting and PEGylation. ACS Appl Bio Mater 5(1):105–112

    Article  PubMed  Google Scholar 

  • Lindén J, Larsson M, Kaur S, Nosrati A, Nydén M (2016) Glutaraldehyde‐crosslinking for improved copper absorption selectivity and chemical stability of polyethyleneimine coatings, J Appl Polym Sci 133

  • Lo K, Chen M, Ho R, Sung H (2009) Pore-Filling Nanoporous Templates from Degradable Block Copolymers for Nanoscale Drug Delivery. ACS Nano 3(9):2660–2666

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Guan Y, Liu H (2006) Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. J Magn Magn Mater 301:469–477

    Article  CAS  Google Scholar 

  • Mardani F, Khorshidi A, Gholampoor S (2019) Sulfonated caspian sea sand: a promising heterogeneous solid acid catalyst in comparison with–SO3H functionalized NiFe2O4@ SiO2@ KIT-6. Chem Select 4:8015–8020

    CAS  Google Scholar 

  • Mosmann T (1986) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Nakamura T, Mizutani M, Nozaki H, Suzuki N, Yano K (2007) Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles. J Phys Chem C 111:1093–1100

    Article  CAS  Google Scholar 

  • Ortiz-Martinez K, Guerrero-Medina KJ, Roman FR, Hernandez-Maldonado AJ (2015) Transition metal modified mesoporous silica adsorbents with zero microporosity for the adsorption of contaminants of emerging concern (CECs) from aqueous solutions. Chem Eng J 264:152–164

    Article  CAS  Google Scholar 

  • Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, Mittal R, Eshraghi AA (2020) Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 28:111–128

    Article  CAS  PubMed  Google Scholar 

  • Popova M, Szegedi A, Cherkezova-Zheleva Z, Mitov I, Kostova N, Tsoncheva T (2009) Toluene oxidation on titanium-and iron-modified MCM-41 materials. J Hazard Mater 168:226–232

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar N, Zhang J, Desai D, Casals E, Gulin-Sarfraz T, Näreoja T, Westermarck J, Rosenholm JM (2016) Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. Int J Nanomed 11:6591

    Article  CAS  Google Scholar 

  • Sazegar MR, Mahmoudian Sh, Mahmoudi A, Triwahyono S, Jalil AA, Mukti RR, Nazirah K, Nur H, Ghoreishi MK (2016) Catalyzed Claisen-Schmidt reaction by protonated aluminate mesoporous silica nanomaterial focused on the (E)-chalcone synthesis as a biologically active compound. RSC Adv 6(13):11023–11031

    Article  CAS  Google Scholar 

  • Schwarz R, Zitzow E, Fiebig A, Hering S, Humboldt Y, Schoenwaelder N, Kämpfer N, Volkmar K, Hinz B, Kreikemeyer B (2022) PEGylation increases antitumoral activity of arginine deiminase of Streptococcus pyogenes. Appl Microbiol Biotechnol 106:261–271

    Article  CAS  PubMed  Google Scholar 

  • Shao D, Lu M-m, Zhao Y-w, Zhang F, Tan Y-f, Zheng X, Pan Y, Xiao X-a, Wang Z, Dong W-f (2017) The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomater 49:531–540

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Deng C, Liu Y, Zhao X, Tang Y, Liu R, Xia Q, Yan W, Ge G (2014) Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles: application to viral nucleic acid extraction from serum. J Chromatogr A 1325:31–39

    Article  CAS  PubMed  Google Scholar 

  • Sundriyal P, Sahu M, Prakash O, Bhattacharya S (2021) Long-term surface modification of PEEK polymer using plasma and PEG silane treatment. Surf Interfaces 25:101253

    Article  CAS  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    Article  CAS  PubMed  Google Scholar 

  • Teo PY, Cheng W, Hedrick JL, Yang YY (2016) Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 98:41–63

    Article  CAS  PubMed  Google Scholar 

  • Todorova S, Parvulescu V, Kadinov G, Tenchev K, Somacescu S, Su B-L (2008) Metal states in cobalt-and cobalt–vanadium-modified MCM-41 mesoporous silica catalysts and their activity in selective hydrocarbons oxidation. Microporous Mesoporous Mater 113:22–30

    Article  CAS  Google Scholar 

  • Topuz F, Uyar T (2018) Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles. Beilstein J Nanotechnol 9:693–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trofimov AD, Ivanova AA, Zyuzin MV, Timin AS (2018) Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics 10:167

    Article  CAS  PubMed Central  Google Scholar 

  • Tsoncheva T, Areva S, Dimitrov M, Paneva D, Mitov I, Linden M, Minchev C (2006) MCM-41 silica modified with copper and iron oxides as catalysts for methanol decomposition. J Mol Catal A Chem 246:118–127

    Article  CAS  Google Scholar 

  • Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM (2019) Nonviral gene delivery with cationic glycopolymers. Acc Chem Res 52:1347–1358

    Article  PubMed  Google Scholar 

  • Vathyam R, Wondimu E, Das S, Zhang C, Hayes S, Tao Z, Asefa T (2011) Improving the adsorption and release capacity of organic-functionalized mesoporous materials to drug molecules with temperature and synthetic methods. J Phys Chem C 115:13135–13150

    Article  CAS  Google Scholar 

  • Verma IM, Naldini L, Kafri T, Miyoshi H, Takahashi M, Blömer U, Somia N, Wang L, Gage F (2000) Gene therapy: promises, problems, and prospects, genes and resistance to disease. Springer, pp 147–157

    Google Scholar 

  • von Baeckmann C, Kählig H, Lindén M, Kleitz F (2021) On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. J Colloids Interface Sci 589:453–461

    Article  Google Scholar 

  • Wang K, Kievit FM, Zhang M (2016) Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol Res 114:56–66

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Little HC, Tiambeng TN, Williams GA, Guan Z (2013) Multifunctional dendronized peptide polymer platform for safe and effective siRNA delivery. J Am Chem Soc 135:4962–4965

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang J, Quan G, Yang P, Pan X, Wu C (2017) The serum-resistant transfection evaluation and long-term stability of gene delivery dry powder based on mesoporous silica nanoparticles and polyethyleneimine by freezing-drying. AAPS Pharm Sci Tech 18:1536–1543

    Article  CAS  Google Scholar 

  • Zhang Y, Ren K, Zhang X, Chao Z, Yang Y, Ye D, Dai Z, Liu Y, Ju H (2018) Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials 163:55–66

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, Huang Y, Pan X, Wu C (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 8:165–177

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the deputy of the research, Tehran North Branch, Islamic Azad University for support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Mahmoudi or Mohammad Reza Sazegar.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badihi, R., Mahmoudi, A., Sazegar, M.R. et al. A study on co-modification of MSNs with some transition metals and polyethyleneimine (PEI) as a versatile strategy for efficient delivery of short oligonucleotides. Chem. Pap. 76, 7023–7035 (2022). https://doi.org/10.1007/s11696-022-02387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02387-7

Keywords

Navigation