Skip to main content

Advertisement

Log in

Zirconyl chloride and its uses in phosphorus chemistry

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Zirconium is a gray–white strong transition metal, highly resistant to heat and corrosion. Due to these properties, zirconium started to replace hafnium and titanium in the last decade and it is used to make surgical instruments and as a hardening agent in steel alloys. Zirconyl chloride octahydrate is one of the most used compounds as zirconium source for the synthesis of zirconium phosphates and zirconium phosphonates. The synthetic routes include precipitation and sol–gel methods. The obtained zirconium- and phosphorus-containing compounds showed potential for applications in catalysis, in medicine as biomaterials (hard tissues reconstruction, such as in dentistry), as ion-exchange materials, or for proton exchange membrane fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberti G, Costantino U (1991) Inorganic and physical aspects of inclusion. New York University Press, chapter 5

  • Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16

    Article  CAS  Google Scholar 

  • Alberti G, Torracca E (1968) Crystalline insoluble salts of polybasic metals-II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. J Inorg Nucl Chem 30:317–318

    Article  CAS  Google Scholar 

  • Alberti G (1996) Comprehensive supramolecular chemistry. Pergamon-Elsevier Science Ltd Oxford, UK

  • Aleahmad M, Taleghani HG, Eisazadeh H (2011) Preparation and characterization of PAn/NiO nanocomposite using various Surfactants. Synth Met 161:990–995

    Article  CAS  Google Scholar 

  • Alexandre M, Dubois P (2008) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 28:1–63

    Article  Google Scholar 

  • Ali AF, Mustarelli P, Magistris A (1998) Optimal synthesis of organo-phosphate precursors for sol-gel preparations. Mat Res Bull 33:697–710

    Article  CAS  Google Scholar 

  • Ali AF, Mustarelli P, Qartaroni E et al (1999) Improving the synthesis of alkyl phosphates as sol-gel precursors. J Mater Res 14:327–329

    Article  CAS  Google Scholar 

  • Ali AF, Hanna A-A, Gad AE (2008) Synthesis of α-zirconium phosphate from acetyl acetonate solution; a comparative synthesis study of α-ZrP. Phosph Res Bull 22:32–40

    Article  CAS  Google Scholar 

  • Alonso DM, Gallo JMR, Mellmer MA et al (2013a) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Cat Sci Technol 3:927–931

    Article  CAS  Google Scholar 

  • Alonso DM, Wettstein SG, Dumesic JA (2013b) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595

    Article  CAS  Google Scholar 

  • Alonso DM, Wettstein SG, Mellmer MA et al (2014) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energ Environ Sci 6:76–80

    Article  Google Scholar 

  • Al-Othman A, Tremblay AY, Pell W (2013) A modified silicic acid (Si) and sulphuric acid (S)–ZrP/PTFE/glycerol composite membrane for high temperature direct hydrocarbon fuel cells. J Power Sour 224:158–167

    Article  CAS  Google Scholar 

  • Al-Othman A, Zhu Y, Tawalbeh M (2017) Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications. J Porous Mater 24:721–729

    Article  CAS  Google Scholar 

  • Al-Othman A, Nancarrow P, Tawalbeh M et al (2020) Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells. Int J Hydrog Energy 46:6100–6109

    Article  CAS  Google Scholar 

  • Al-Shaal MG, Wright WRH, Palkovits R (2012) Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chem 14:1260–1263

    Article  CAS  Google Scholar 

  • Amenuvor G, Makhubela CE, Darkwa J (2016) Efficient solvent-free hydrogenation of levulinic acid to γ-valerolactone by pyrazolylphosphite and pyrazolylphosphinite ruthenium(II) complexes. ACS Sustain Chem Eng 4:6010–6018

    Article  CAS  Google Scholar 

  • Antolini E (2014) Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal 4:1426–1440

    Article  CAS  Google Scholar 

  • Arsalan M, Zehra A, Khan MMA (2019) Preparation and characterization of Polyvinyl chloride-basednickelphosphate ion selective membrane and its application for removal of ions through water bodies. Ground Sustain Dev 8:41–48

    Article  Google Scholar 

  • Azarafza A, Ismail MS, Rezakazemi M et al (2019) Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell. Renew Sustain Energy Rev 116:109420

    Article  CAS  Google Scholar 

  • Benhamza H, Barboux P, Bouhaouss A et al (1991) Sol–gel synthesis of Zr(HPO4)2·H2O. J Mater Chem 1:681–684

    Article  CAS  Google Scholar 

  • Boo WJ, Sun L, Liu J et al (2007) Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J Phys Chem C 111:10377

    Article  CAS  Google Scholar 

  • Browne MP, Nolan H, Duesberg GS et al (2016) Low-overpotential high-activity mixed manganese and ruthenium oxide electrocatalysts for oxygen evolution reaction in alkaline media. ACS Catal 6:2408–2415

    Article  CAS  Google Scholar 

  • Burke MS, Enman LJ, Batchellor AS et al (2015a) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27:7549–7558

    Article  CAS  Google Scholar 

  • Burke MS, Kast MG, Trotochaud L et al (2015b) Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137:3638–3648

    Article  CAS  PubMed  Google Scholar 

  • Caprita R, Caprita A, Ilia G et al (2010) Laboratory procedures for assessing quality of soybean meal. Proc World Congr Eng Comput Sci (WCECS) 2:791

    Google Scholar 

  • Casañas-Montes B, Díaz A, Barbosa C (2015) Molybdocene dichloride intercalation into zirconium phosphate nanoparticles. J Organomet Chem 791:34–40

    Article  CAS  Google Scholar 

  • Casciola M, Bianchi D (1985) Frequency response of polycrystalline samples of α−Zr(HPO4)2·H2O at different relative humidities. Solid State Ionics 17:287–293

    Article  CAS  Google Scholar 

  • Clearfield A (1995) Inorganic ion exchangers: a technology ripe for development. Ind Eng Chem Res 34:2865–2872

    Article  CAS  Google Scholar 

  • Clearfield A, Smith AGD (1969) Crystallography and structure of alpha-zirconium bis (monohydrogenorthophosphate) monohydrate. Inorg Chem 8:431–436

    Article  CAS  Google Scholar 

  • Clearfield A, Stynes A (1964) The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. J Inorg Nucl Chem 26:117–129

    Article  CAS  Google Scholar 

  • Clearfield A, Nancollas GH, Blessing RH (1973) Ion exchange and solvent extraction. Marcel Dekker, New York, vol, p 5

    Google Scholar 

  • Clearfield A, Bortun AI, Bortun LN (1998) Direct hydrothermal synthesis of zirconium phosphate and zirconium arsenate with a novel basic layered structure in alkaline media. Inorg Chem Comm 1:206–208

    Article  CAS  Google Scholar 

  • Clearfield A, Costantino U (1996) Comprehensive supramolecular chemistry. In: Alberti G, Bein T (Eds), Pergamon-Elsevier Science Ltd., Oxford, U.K., Vol. 7

  • Clearfield A (1982) Inorganic ion exchange materials. Chapter 1–3, CRC Press Inc. Boca Raton, Florida

  • Clearfield A (1998) In Progress in inorganic chemistry, In: Karlin KD (Eds.), John Wiley & Sons: New York, Vol. 47

  • Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–546

    Article  CAS  Google Scholar 

  • Costamagna P, Yang C, Bocarsly A et al (2002) Nafion®115/zirconium phosphate composite membranes for operation of PEMFCs above 100ºC. Electrochim Acta 47:1023–1033

    Article  CAS  Google Scholar 

  • Curini M, Montanari F, Rosati O et al (2003) Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Lett 44:3923–3925

    Article  CAS  Google Scholar 

  • Díaz A, Saxena V, González J (2012) Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem Commun 48:1754–1756

    Article  CAS  Google Scholar 

  • Doyle AD, Montoya JH, Vojvodic A (2015) Improving oxygen electrochemistry through nanoscopic confinement. Chem Cat Chem 7:738–742

    CAS  Google Scholar 

  • Drehe M, Simulescu V, Ilia G (2008) Progress in the development of flame retardants. Rev in Chem Eng 24:263–302

    CAS  Google Scholar 

  • Ehteshami SMM, Chan SH (2014) The role of hydrogen and fuel cells to store renewable energy in the future energy network-Potentials and challenges. Energy Policy 73:103–109

    Article  CAS  Google Scholar 

  • Enman LJ, Burke MJ, Batchellor AS et al (2016) Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal 6:2416–2423

    Article  CAS  Google Scholar 

  • Fabbri E, Habereder A, Waltar K et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821

    Article  CAS  Google Scholar 

  • Feng Y, He W, Zhang X et al (2007) The preparation of nanoparticle zirconium phosphate. Mater Lett 61:3258–3268

    Article  CAS  Google Scholar 

  • Furman BR, Wellinghoff ST, Thompson PM et al (2008) Preparation, characterization, and modeling of α-zirconium phosphonates with ether-functional surfaces. Chem Mater 20:5491–5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38:2039–2061

    Article  CAS  Google Scholar 

  • Gal J, Gal OS (1958) Proc of the 2nd Int Conf of Peaceful Uses of Atomic Energy, Geneva, 28:24-30

  • Galán-Mascarós JR (2015) Water oxidation at electrodes modified with earth-abundant transition-metal catalysts. Chem Electro Chem 2:37–50

    Google Scholar 

  • Gheonea R, Mak C, Crasmareanu EC et al (2017) Surface modification of SnO2 with phosphonic acids. Hindawi Publ Corp J Chem. https://doi.org/10.1155/2017/2105938

    Article  Google Scholar 

  • Grot WJ, Rajendran G (1999) US Patent 5:583

  • Gupta VK, Pathania D, Singh P (2013) Cellulose acetate-zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydr Polym 95:434–440

    Article  CAS  PubMed  Google Scholar 

  • Hajipour AR, Karimi H (2014) Synthesis and characterization of hexagonal zirconium phosphate nanoparticles. Mat Lett 116:356–358

    Article  CAS  Google Scholar 

  • Hengne AM, Rode CV (2014) Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone. Green Chem 14:1064–1072

    Article  CAS  Google Scholar 

  • Hernandez-Fernandez FJ, De los Rios AP, Mateo-Ramirez F (2016) New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell. Separ Purif Technol 160:51–58

    Article  CAS  Google Scholar 

  • Heuveling DA, Visser GWM, Baclayon M et al (2011) 89Zr-nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results. J Nucl Med 52:1580–1584

    Article  CAS  PubMed  Google Scholar 

  • Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature (140 ºC) proton exchange membrane fuel cells. J Power Sources 142:223–237

    Article  CAS  Google Scholar 

  • Horvath IT, Mehdi H, Fabos V et al (2008) γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242

    Article  CAS  Google Scholar 

  • Hosseini SM, Jashni E, Jafari MR et al (2018) Nanocomposite polyvinyl chloride-based heterogeneous cationexchangemembrane prepared by synthesized ZnQ2 nanoparticles: ionic behavior and morphological characterization. J Membr Sci 560:1–10

    Article  CAS  Google Scholar 

  • Hu R, Zhang R, He Y et al (2018) Graphene oxide-in-Polymer nanofiltration membranes with enhanced permeabilityby interfacial polymerization. J Memb Sci 564:813–819

    Article  CAS  Google Scholar 

  • Ikawa H (1992) Proton conductors (ed) Ph Colomban (Cambridge: Cambridge University Press)

  • Ilia G, Simulescu V, Mak CA et al (2014) The use of transesterification method for obtaining phosphorus-containing polymers. Adv Polym Technol 33:21437

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer R (2015) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • Iskandar F, Gradon L, Okuyama K (2006) Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Coll Interface Sci 265:296–303

    Article  CAS  Google Scholar 

  • Jayswal A, Chudasama U (2008) Synthesis and characterization of a novel metal phosphonate, zirconium (IV)-hydroxy ethylidene diphosphonate, and its application as an ion exchanger. Turk J Chem 32:63–74

    CAS  Google Scholar 

  • Jones JV, Piatak NM, Bedinger GM (2017) Zirconium and hafnium, chap. V . Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, V1-V26

  • Kaushal S, Sharma PK, Mittal SK et al (2015) Novel zinc oxide–zirconium (IV) phosphate nanocomposite as antibacterial material with enhanced ion exchange properties. Coll Interface Sci Comm 7:1–6

    Article  CAS  Google Scholar 

  • Khan MMA, Rafiuddin (2012a) Synthesis, electrochemical characterization, antibacterial study and evaluation of fixed charge density of polystyrene based calcium-strontium phosphate nanocomposite membrane. Desalination 284:200–202

    Article  CAS  Google Scholar 

  • Khan MMA, Rafiuddin (2012b) Synthesis, characterization and antibacterial activity of polystyrene based Mg3 (PO4)2/Ca3(PO4)2 nanocomposite membrane. Desalination 294:74–81

    Article  CAS  Google Scholar 

  • Kohn D, Popa S (1999) Heat transfer at boiling of aqueous solutions of substances with limited solubility. Exp Heat Transfer 12:193–198

    Article  CAS  Google Scholar 

  • Kumari V, Badru R, Singh S et al (2020) Synthesis and electrochemical behaviour of GO doped ZrP nanocomposite membranes. J Environ Chem Eng 8:103690

    Article  CAS  Google Scholar 

  • Lai GS, Lau WJ, Goh PS et al (2016) Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 387:14–24

    Article  CAS  Google Scholar 

  • Li Q, He R, Jensen JO (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100ºC. Chem Mater 15:4896–4915

    Article  CAS  Google Scholar 

  • Li H, Jiang F, Di Z et al (2012a) Anhydrous proton-conducting glass membranes doped with ionic liquid for intermediatetemperature fuel cells. Electrochim Acta 59:86–90

    Article  CAS  Google Scholar 

  • Li H, Pan L, Nie C et al (2012b) Reduced graphene oxide and activated carbon composites for capacitive deionization. J Mater Chem 22:15556–15561

    Article  CAS  Google Scholar 

  • Lin XZ, Ren TZ, Yuan ZY (2015) Mesoporous zirconium phosphonate materials as efficient water-tolerable solid acid catalysts. Cat Sci Technol 5:1485–1494

    Article  CAS  Google Scholar 

  • Lin JS, Kumar SR, Ma WT et al (2017) Gradiently distributed iron oxide@ graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J Membr Sci 543:28–39

    Article  CAS  Google Scholar 

  • Lind A, Hohenesche CDFV, Smatt J-H et al (2003) Spherical silica agglomerates possessing hierarchical porosity prepared by spray drying of MCM-41 and MCM-48 nanospheres. Micropor Mesopor Mater 66:219–227

    Article  CAS  Google Scholar 

  • Lomate S, Sultana A, Fujitani T (2017) Effect of SiO2 support properties on the performance of Cu-SiO2 catalysts for the hydrogenation of levulinic acid to gamma valerolactone using formic acid as a hydrogen source. Cat Sci Technol 7:3073–3083

    Article  CAS  Google Scholar 

  • Lu H, Wilkie CA, Ding M et al (2011) Flammability performance of poly(vinyl alcohol) nanocomposites with zirconium phosphate and layered silicates. Polym Degrad Stabil 96:1219–1224

    Article  CAS  Google Scholar 

  • Lu Z, Wang H, Kong D et al (2014) Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat Commun 5:4345

    Article  CAS  PubMed  Google Scholar 

  • M’Bareck CO, Nguyen QT, Alexandre S et al (2006) Fabrication of ion-exchange ultrafiltration membranes for water treatment. I. Semi-interpenetrating polymer networks of polysulfone and poly (acrylic acid). J Membr Sci 278:10–18

    Article  CAS  Google Scholar 

  • Ma TY, Dai S, Jaroniec M et al (2014) Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem Int Ed 53:7281–7285

    Article  CAS  Google Scholar 

  • Macarie L, Simulescu V, Ilia G (2019) Ultrasonic irradiation used in synthesis of aminophosphonates. Monatsh Für Chemie/chem Mon 150:163–171

    Article  CAS  Google Scholar 

  • Mak TW (1968) Refinement of the crystal structure of zirconyl chloride octahydrate. Can J Chem 46:3491

    Article  CAS  Google Scholar 

  • Manjula N, Selvan G (2017) Magnetic and antibacterial properties of Zr-doped SnO2 nanopowders. J Mater Sci Mater Electron 28:28

    Article  Google Scholar 

  • Maranescu B, Visa A, Ilia G et al (2014) Synthesis and characterization of styryl phosphonic acid and its use as new ligand for phosphonate metal organic framework. J Coord Chem 67:1562–1572

    Article  CAS  Google Scholar 

  • Maranescu B, Lupa L, Visa A (2016) Synthesis, characterizations and Pb(II) sorption properties of cobalt phosphonate materials. Pure Appl Chem 88:979–992

    Article  CAS  Google Scholar 

  • Marino MG, Kreuer KD (2015) Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. Chemsuschem 8:513–523

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Brahmakumar M, Abraham TE (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 82:176–187

    Article  CAS  PubMed  Google Scholar 

  • McCrory CCL, Jung S, Ferrer IM et al (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357

    Article  CAS  PubMed  Google Scholar 

  • Mohammed H, Al-Othman A, Nancarrow P et al (2019) Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019

    Article  Google Scholar 

  • Mosby BM, Díaz A, Bakhmutov V (2014) Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl Mater Interfaces 6:585–592

    Article  CAS  PubMed  Google Scholar 

  • Nancarrow P, Mohammed H (2017) Ionic liquids in space technology E current and future trends. ChemBioEng Rev 4:106–119

    Article  Google Scholar 

  • Nielsen R (2005) Zirconium and zirconium compounds, in Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37:2533–2546

    Article  CAS  PubMed  Google Scholar 

  • Okuyama K, Abdullah M, Lenggoro IW et al (2006) Preparation of functional nanostructured particles by spray drying. Adv Powder Technol 17:587–611

    Article  CAS  Google Scholar 

  • Papaspyridakos P, Kunal L (2008) Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: a clinical report. J Prosthet Dent 100:165–172

    Article  CAS  PubMed  Google Scholar 

  • Patel H, Chudasama U (2006) A comparative study of proton transport properties of zirconium (IV) phosphonates. Bull Mater Sci 29:665–671

    CAS  Google Scholar 

  • Perreault F, Tously ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Techno Lett 1:71–76

    Article  CAS  Google Scholar 

  • Poojary DM, Zhang B, Clearfield A (1994) Structure of a mixed phosphate/phosphonate layered zirconium compound from synchrotron x-ray powder diffraction data. Angew Chem Int Ed Eng 33:2324–2326

    Article  Google Scholar 

  • Popa S, Boran S (2015) Aspects regarding efficiency of two experimental fractionating columns. Rev Romaine De Chim 60:991–995

    Google Scholar 

  • Popa S, Boran S (2016) Energetic efficiency calculation for a new experimental reactor. Mat Plastice 53:410–413

    Google Scholar 

  • Ramos-Garcs MV, Sanchez J, Barraza Alvarez I et al (2019) Water splitting electrocatalysis within layered inorganic. Nanomaterials. https://doi.org/10.5772/intechopen.88116

    Article  Google Scholar 

  • Ran J, Wu L, He Y et al (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Rivera EJ, Barbosa C, Torres R et al (2011) Vapochromic and vapoluminescent response of materials based on platinum(ii) complexes intercalated into layered zirconium phosphate. J Mater Chem 21:15899–15902

    Article  CAS  Google Scholar 

  • Ruggiero A, Holland JP, Hudolin T et al (2011) Targeting the internal epitope of prostate-specific membrane antigen with 89Zr-7E11 immuno-PET. J Nuclear Med 52:1608–1615

    Article  CAS  Google Scholar 

  • Sanchez J, Ramos-Garcés MV, Narkeviciute I et al (2017) Transition metal-modified zirconium phosphate electrocatalysts for the oxygen evolution reaction. Catalysts 7:132

    Article  CAS  Google Scholar 

  • Shao K, Wang H (2012) Insertion of Ag atoms into layered MoO3 via a template route. Mater Res Bull 47:3927–3930

    Article  CAS  Google Scholar 

  • Shen J (2013) Advanced ceramics for dentistry, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Shen C, Barrios E, Zhai L (2018) Bulk polymer-derived ceramic composites of graphene oxide. ACS Omega 3:4006–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shunmugavel S, Riisager A (2012) Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catal Commun 17:71–75

    Article  CAS  Google Scholar 

  • Simulescu V, Crasmareanu E, Ilia G (2011) Properties and structures of phosphorus-nitrogen heterocycles. Heterocycles 83:275–291

    Article  CAS  Google Scholar 

  • Sinhamahapatra A, Sutradhar N, Roy B (2010) Mesoporous zirconium phosphate catalyzed reactions: synthesis of industrially important chemicals in solvent-free conditions. Appl Catal 385:22–30

    Article  CAS  Google Scholar 

  • Stobinski L, Lesiak B, Malolepszy A et al (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154

    Article  CAS  Google Scholar 

  • Stwertka A (1996) A guide to the elements. Oxford University Press

    Google Scholar 

  • Subbiah A, Pyle D, Rowland A et al (2005) A family of microporous materials formed by Sn(IV) phosphonate nanoparticles. J Am Chem Soc 127:10826–10827

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Boo WJ, Browning RL (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17:5606–5609

    Article  CAS  Google Scholar 

  • Sung H-Y, Yu J, Williams LD (1998) Zirconium phosphates of variable dimension templated by ethylene diamine: crystal structures of 1-D [enH2][Zr(HPO4)3] and 2-D [enH2]0.5[Zr(PO4)(HPO4)]. J Solid State Chem 140:46–55

    Article  CAS  Google Scholar 

  • Tang X, Hu L, Sun Y et al (2013) Conversion of biomass-derived ethyl levulinate into γ-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC Adv 3:10277–10284

    Article  CAS  Google Scholar 

  • Tang X, Chen HW, Hu L et al (2014) Conversion of biomass to gamma-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Appl Cat b: Environ 147:827–834

    Article  CAS  Google Scholar 

  • Tang B, Dai W, Sun X et al (2015) Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem 17:1744–1755

    Article  CAS  Google Scholar 

  • Thomsen JM, Huang DL, Crabtree RH et al (2015) Brudvig, Iridium-based complexes for water oxidation. Dalton Trans 44:12452–12472

    Article  CAS  PubMed  Google Scholar 

  • Topkaya R, Kurtan U, Baykal A et al (2013) Polyvinylpyrrolidone(PVP)/MnFe2O4 nanocomposite: sol-gel autocombustion synthesis and its magnetic characterization. Ceram Int 39:5651–5658

    Article  CAS  Google Scholar 

  • Trobajo C, Khainakov SA, Espina A et al (2000) On the synthesis of α-zirconium phosphate. Chem Mater 12:1787–1790

    Article  CAS  Google Scholar 

  • Troup JM, Clearfield A (1977) Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of. alfa.-zirconium phosphate. Inorg Chem 16:3311–3314

    Article  CAS  Google Scholar 

  • Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9:2353–2358

    Article  CAS  Google Scholar 

  • Tukacs JM, Fridrich B, Dibó G et al (2015) Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule. Green Chem 17:5189–5195

    Article  CAS  Google Scholar 

  • Uddin ME, Layek RK, Kim HY et al (2016) Preparation and enhanced mechanical properties of non-covalently functionalized graphene oxide/cellulose acetate nanonanocomposites. Compos Part B-Eng 90:223–231

    Article  CAS  Google Scholar 

  • Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100:410–426

    Article  CAS  Google Scholar 

  • van Rij CM, Sharkey RM, Goldenberg DM et al (2011) Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled Anti-EGP-1 monoclonal antibody. J Nuclear Med 52:1601–1607

    Article  CAS  Google Scholar 

  • Varkolu M, Velpula V, Burri DR et al (2016) Gas phase hydrogenation of levulinic acid to γ-valerolactone over supported Ni catalysts with formic acid as hydrogen source. New J Chem 40:3261–3267

    Article  CAS  Google Scholar 

  • Visa A, Mracec M, Maranescu B et al (2012) Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio. Chem Central J 6:91

    Article  CAS  Google Scholar 

  • Visa A, Maranescu B, Lupa L et al (2020) New efficient adsorbent materials in the removal process of Cd(II) from aqueous solutions. Nanomaterials 10:899

    Article  CAS  PubMed Central  Google Scholar 

  • Wang J, Jaenicke S, Chuah G-K (2014) Zirconium-Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Adv 4:13481–13489

    Article  CAS  Google Scholar 

  • Wang J, Wang R, Zi H et al (2018) Porous organic zirconium phosphonate as efficient catalysts for the catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone without external hydrogen. J Chin Chem Soc 65:750–759

    Article  CAS  Google Scholar 

  • Wei S, Lizu M, Zhang X et al (2013) Electrospun poly(vinyl alcohol)/α-zirconium phosphate nanocomposite fibers. High Perform Polym 25:25–32

    Article  CAS  Google Scholar 

  • Wei Seh Z, Kibsgaard J, Dickens CF et al (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:4998

    Article  Google Scholar 

  • Weng B, Xu W, Wang C et al (2017) A layered Na1-xNiyFe1-yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ Sci 10:121–128

    Article  CAS  Google Scholar 

  • Wippermann K, Wackerl J, Lehnert W et al (2016) 2-Sulfoethylammonium trifluoromethanesulfonate as an ionic liquid for high temperature PEM fuel cells. J Electrochem Soc 163:F25–F37

    Article  CAS  Google Scholar 

  • Wu H, Liu C, Chen J et al (2009) Structure and properties of starch/α-zirconium phosphate nanocomposite films. Carbohyd Polym 77:358–364

    Article  CAS  Google Scholar 

  • Wu H, Liu C, Yang Y et al (2010) Starch-based nanocomposites reinforced with layered zirconium phosphonate. Pol Comp 31:1938–1946

    Article  CAS  Google Scholar 

  • Wu Z-S, Yang S, Sun Y et al (2012) 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085

    Article  CAS  PubMed  Google Scholar 

  • Xin JY, Yan DX, Ayodele O et al (2015) Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid. Green Chem 17:1065–1070

    Article  CAS  Google Scholar 

  • Xu Q, Li XL, Pan T et al (2016) Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chem 18:1287–1294

    Article  CAS  Google Scholar 

  • Yang Y, Liu C, Wu H (2009) Preparation and properties of poly(vinyl alcohol)/exfoliated α-zirconium phosphate nanocomposite films. Polym Test 28:371–377

    Article  CAS  Google Scholar 

  • Yang Y, Liu C, Chang PR et al (2010) Properties and structural characterization of oxidized starch/PVA/α-zirconium phosphate composites. J Appl Polym Sci 115:1089–1097

    Article  CAS  Google Scholar 

  • Yang Y, Sun CJ, Brown DE et al (2016) A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. Green Chem 18:3558–3566

    Article  CAS  Google Scholar 

  • Zhang Y, Chen X, Yang W (2008) Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film. Sens Actuat B Chem 130:682–688

    Article  CAS  Google Scholar 

  • Zhang F, Xie Y, Lu W et al (2010) Preparation of microspherical α-zirconium phosphate catalysts for conversion of fatty acid methyl esters to monoethanolamides. J Coll Int Sci 349:571–577

    Article  CAS  Google Scholar 

  • Zhang Y, Liu C, Li R et al (2014) The effect of zirconium phosphonate with different functional groups on the structure and properties of chitosan film. Polym Adv Technol 25:816–822

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang S, Gao J et al (2018) Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J Membr Sci 515:230–237

    Article  CAS  Google Scholar 

  • Zhu J, Start JP, Mauritz KA et al (2002) Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym Degrad Stabil 77:253–258

    Article  CAS  Google Scholar 

  • Zhu Y-P, Ma T-Y, Liu Y-L et al (2014) Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg Chem Front 1:360–383

    Article  CAS  Google Scholar 

  • Zhu SH, Xue YF, Guo J et al (2016) Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5. ACS Catal 6:2035–2042

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Simulescu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilia, G., Merghes, P., Varan, N. et al. Zirconyl chloride and its uses in phosphorus chemistry. Chem. Pap. 76, 5293–5307 (2022). https://doi.org/10.1007/s11696-022-02266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02266-1

Keywords

Navigation