Skip to main content
Log in

Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The effect of Phosphotungstic acid (PWA) on the proton conductivity and morphology of zirconium phosphate (ZrP), porous polytetrafluoethylene (PTFE), glycerol (GLY) composite membrane was investigated in this work. The composite membranes were synthesized using two approaches: (1) Phosphotungstic acid (PWA) added to phosphoric acid and, (2) PWA + silicic acid were added to phosphoric acid. ZrP was formed inside the pores of PTFE via the in situ precipitation. The membranes were evaluated for their morphology and proton conductivity. The proton conductivity of PWA–ZrP/PTFE/GLY membrane was 0.003 S cm−1. When PWA was combined with silicic acid, the proton conductivity increased from 0.003 to 0.059 S cm−1 (became about 60% of Nafion’s). This conductivity is higher than the proton conductivity of Nafion–silica–PWA membranes reported in the literature. The SEM results showed a porous structure for the modified membranes. The porous structure combined with this reasonable proton conductivity would make these membranes suitable as the electrolyte component in the catalyst layer for direct hydrocarbon fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Savadogo, F.J.R. Varela, J. New Mater. Electrochem. Syst. 4, 93–97 (2001)

    CAS  Google Scholar 

  2. H. Khakdaman, Y. Bourgault, M. Ternan, Ind. Eng. Chem. Res. 49, 1079–1085 (2010)

    Article  CAS  Google Scholar 

  3. H. Khakdaman, Y. Bourgault, M. Ternan, J. Power Sour. 196, 3186–3194 (2011)

    Article  CAS  Google Scholar 

  4. C. Yang, P. Costamagna, S. Srinivasan, J. Benzider, A.B. Bocarsly, J. Power Sour. 103, 1–9 (2001)

    Article  CAS  Google Scholar 

  5. J.L. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. Wilkinson, Z. Liu, S. Holdcroft, J. Power Sour. 160, 872–891 (2006)

    Article  CAS  Google Scholar 

  6. C. Neyerlin, H.A. Gasteiger, C.K. Mittelsteadt, J. Jorne, W.B. Gu, J. Electrochem. Soc. 152, A1073–A1108 (2005)

    Article  CAS  Google Scholar 

  7. F. Bauer, M. Willert-Porada, J. Membr. Sci. 233, 141–149 (2004)

    Article  CAS  Google Scholar 

  8. H.C. Kuan, C.S. Wu, C.Y. Chen, Z.Z. Yu, A. Dasari, Y.W. Mai, Electrochem. Solid State Lett. 9, A76–A79 (2006)

    Article  CAS  Google Scholar 

  9. E. Chalkova, M.V. Fedkin, S. Komarneni, S.N. Lvov, J. Electrochem. Soc. 154, B288–B295 (2007)

    Article  CAS  Google Scholar 

  10. D. Truffier-Boutry, A. De Geyer, L. Guetaz, O. Diat, G. Gebel, Macromolecules 40, 8259–8264 (2007)

    Article  CAS  Google Scholar 

  11. C. Yang, S. Srinivasan, A.S. Arico, P. Cretı, V. Baglio, V. Antonucci, Electrochem. Solid-State Lett. 4, A31–A34 (2001)

    Article  CAS  Google Scholar 

  12. G. Alberti, M. Casciola, A. Donnadio, R. Narducci, M. Pica, M. Sganappa, Desalination 19, 280–282 (2006)

    Article  Google Scholar 

  13. W.G. Grot, G. Rajendran, US Patent 5,919,583, 1999

  14. P. Costamagna, C. Yang, A. Bocarsly, S. Srinivasan, Electrochim. Acta 47, 1023–1033 (2002)

    Article  CAS  Google Scholar 

  15. R. Jiang, H.R. Kunz, J. Fenton, Electrochim. Acta 51, 5596–5605 (2006)

    Article  CAS  Google Scholar 

  16. Q. Li, R. He, J. Jensen, N.J. Bjerrum, Chem. Mater. 15, 4896–4915 (2003)

    Article  CAS  Google Scholar 

  17. V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sour. 169, 221–238 (2007)

    Article  CAS  Google Scholar 

  18. B. Tazi, O. Savadogo, J. New Mater. Electrochem. Syst. 4, 187–196 (2001)

    CAS  Google Scholar 

  19. B. Tazi, O. Savadogo, Electrochim. Acta 45, 4329–4339 (2000)

    Article  CAS  Google Scholar 

  20. M. Helen, B. Viswanathan, S. Srinivasa, Murthy. J. Membr. Sci. 292, 98–105 (2007)

    Article  CAS  Google Scholar 

  21. N. Giordano, P. Staiti, S. Hocevar, A.S. Aricò, Electrochim. Acta 41, 397–403 (1996)

    Article  CAS  Google Scholar 

  22. P. Staiti, S. Hocevar, N. Giordano, Int. J. Hydrogen Energy 22, 809–814 (1997)

    Article  CAS  Google Scholar 

  23. Z.G. Shao, P. Joghee, I.-M. Hsing, J. Membr. Sci. 229, 43–51 (2004)

    Article  CAS  Google Scholar 

  24. J. Pandey, A. Shukla, Mater. Lett. 100, 292–295 (2013)

    Article  CAS  Google Scholar 

  25. Y. Zhou, J. Yang, H. Su, J. Zeng, S.P. Jiang, W.A. Goddard, J. Am. Chem. Soc. 136, 4954–4964 (2014)

    Article  CAS  Google Scholar 

  26. A. Al-Othman, A.Y. Tremblay, W. Pell, S. Letaief, T.J. Burchellc, B.A. Peppley, M. Ternan, J. Power Sour. 195, 2520–2525 (2010)

    Article  CAS  Google Scholar 

  27. A. Al-Othman, A.Y. Tremblay, W. Pell, Y. Liu, B.A. Peppley, M. Ternan, J. Power Sour. 199, 14–21 (2012)

    Article  CAS  Google Scholar 

  28. A. Al-Othman, A.Y. Tremblay, W. Pell, S. Letaief, Y. Liu, B.A. Peppley, M. Ternan, J. Power Sour. 224, 158–167 (2013)

    Article  CAS  Google Scholar 

  29. K.-D. Kreuer, Chem. Mater. 8, 610–641 (1996)

    Article  CAS  Google Scholar 

  30. M. Nogami, R. Nagao, C. Wong, T. Kasuga, T. Hayakawa, J. Phys. Chem. B 103, 9468–9472 (1999)

    Article  CAS  Google Scholar 

  31. G. Alberti, E. Torracca, J. lnorg. Nucl. Chem. 30, 1093–1099 (1968)

    Article  CAS  Google Scholar 

  32. G. Alberti, M. Casciola, U. Costantino, G. Levi, G. Ricciardi, J. Inorg. Nucl. Chem. 40, 533–537 (1978)

    Article  CAS  Google Scholar 

  33. S. Ganapathy, M. Fournier, J.F. Paul, L. Delevoye, M. Guelton, J.P. Amoureux, J. Am. Chem. Soc. 124, 7821–7828 (2002)

    Article  CAS  Google Scholar 

  34. U. Mioc, M. Davidovic, N. Tjapkin, P. Colomban, A. Novak, Solid State Ion. 46, 103–109 (1991)

    Article  CAS  Google Scholar 

  35. Z.G. Shao, H. Xu, M. Li, I.-M. Hsing, Solid State Ion. 177, 779–785 (2006)

    Article  CAS  Google Scholar 

  36. S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, J. Membr. Sci. 173, 17–34 (2000)

    Article  CAS  Google Scholar 

  37. L.T. Aany Sofia, A. Krishnan, M. Sankar, N.K. Kala Raj, P. Manikandan, P.R. Rajamohanan, T.G. Ajithkumar, J. Phys. Chem. C 113, 21114–21122 (2009)

    Article  Google Scholar 

  38. P. Staiti, S. Freni, S. Hocevar, J. Power Sour. 79, 250–255 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the American University of Sharjah provided through the faculty research travel grant, FRG15-T-21 and FRG14-3-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani Al-Othman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Othman, A., Zhu, Y., Tawalbeh, M. et al. Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications. J Porous Mater 24, 721–729 (2017). https://doi.org/10.1007/s10934-016-0309-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0309-6

Keywords

Navigation